Skip to main content
Log in

A superconvergent hybridizable discontinuous Galerkin method for Dirichlet boundary control of elliptic PDEs

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We begin an investigation of hybridizable discontinuous Galerkin (HDG) methods for approximating the solution of Dirichlet boundary control problems governed by elliptic PDEs. These problems can involve atypical variational formulations, and often have solutions with low regularity on polyhedral domains. These issues can provide challenges for numerical methods and the associated numerical analysis. We propose an HDG method for a Dirichlet boundary control problem for the Poisson equation, and obtain optimal a priori error estimates for the control. Specifically, under certain assumptions, for a 2D convex polygonal domain we show the control converges at a superlinear rate. We present 2D and 3D numerical experiments to demonstrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Apel, T., Mateos, M., Pfefferer, J., Rösch, A.: Error estimates for Dirichlet control problems in polygonal domains: quasi-uniform meshes. Math. Control Relat. Fields 8(1), 217–245 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arada, N., Raymond, J.-P.: Dirichlet boundary control of semilinear parabolic equations. I. Problems with no state constraints. Appl. Math. Optim. 45(2), 125–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belgacem, F.B., El Fekih, H., Metoui, H.: Singular perturbation for the Dirichlet boundary control of elliptic problems. Math. Model. Numer. Anal. 37(5), 850–883 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, volume 15 of Texts in Applied Mathematics. Springer, New York (2008)

    Book  Google Scholar 

  5. Casas, E., Mateos, M., Raymond, J.-P.: Penalization of Dirichlet optimal control problems. ESAIM Control Optim. Calc. Var. 15(4), 782–809 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Casas, E., Raymond, J.-P.: Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations. SIAM J. Control Optim. 45(5), 1586–1611 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cesmelioglu, A., Cockburn, B., Qiu, W.: Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier–Stokes equations. Math. Comput. 86(306), 1643–1670 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chamakuri, N., Engwer, C., Kunisch, K.: Boundary control of bidomain equations with state-dependent switching source functions in the ionic model. J. Comput. Phys. 273, 227–242 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang, L., Gong, W., Yan, N.: Weak boundary penalization for Dirichlet boundary control problems governed by elliptic equations. J. Math. Anal. Appl. 453(1), 529–557 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, G. Pi, L., Zhang, Y.: A new ensemble HDG method for parameterized convection diffusion PDEs. 2019. arXiv:1910.10295

  11. Chen, Y., Cockburn, B., Dong, B.: Superconvergent HDG methods for linear, stationary, third-order equations in one-space dimension. Math. Comput. 85(302), 2715–2742 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, Y.: Superconvergence of mixed finite element methods for optimal control problems. Math. Comput. 77(263), 1269–1291 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chowdhury, S., Gudi, T., Nandakumaran, A.K.: Error bounds for a Dirichlet boundary control problem based on energy spaces. Math. Comput. 86(305), 1103–1126 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B.: Static condensation, hybridization, and the devising of the HDG methods. In: Building bridges: connections and challenges in modern approaches to numerical partial differential equations, volume 114 of Lect. Notes Comput. Sci. Eng., pp. 129–177. Springer, Cham (2016)

  15. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.J.: Analysis of HDG methods for Stokes flow. Math. Comput. 80(274), 723–760 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cockburn, B., Mustapha, K.: A hybridizable discontinuous Galerkin method for fractional diffusion problems. Numer. Math. 130(2), 293–314 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cockburn, B., Shen, J.: A hybridizable discontinuous Galerkin method for the \(p\)-Laplacian. SIAM J. Sci. Comput. 38(1), A545–A566 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Danilin, A.R.: Asymptotics of the solution of a problem of optimal boundary control of a flow through a part of the boundary. Tr. Inst. Mat. Mekh. 20(4), 116–127 (2014)

    Google Scholar 

  20. de los Reyes, J.C., Kunisch, K.: A semi-smooth Newton method for control constrained boundary optimal control of the Navier–Stokes equations. Nonlinear Anal. 62(7), 1289–1316 (2005)

  21. Deckelnick, K., Günther, A., Hinze, M.: Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains. SIAM J. Control Optim. 48(4), 2798–2819 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Springer, New York (2004)

    Book  MATH  Google Scholar 

  23. Ern, A., Guermond, J.-L.: Finite element quasi-interpolation and best approximation. ESAIM Math. Model. Numer. Anal. 51(4), 1367–1385 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Fursikov, A.V., Gunzburger, M.D., Hou, L.S.: Boundary value problems and optimal boundary control for the Navier–Stokes system: the two-dimensional case. SIAM J. Control Optim. 36(3), 852–894 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fursikov, A.V., Gunzburger, M.D., Hou, L.S.: Optimal Dirichlet control and inhomogeneous boundary value problems for the unsteady Navier–Stokes equations. In: Proceedings of the Control and partial differential equations (Marseille-Luminy, 1997), volume 4 of ESAIM , pp. 97–116. Society for Industrial and Applied Mathematics, Paris (1998)

  26. Fursikov, A.V., Gunzburger, M.D., Hou, L.S.: Optimal boundary control for the evolutionary Navier–Stokes system: the three-dimensional case. SIAM J. Control Optim. 43(6), 2191–2232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  28. Gong, W., Li, B.: Improved error estimates for semi-discrete finite element solutions of parabolic Dirichlet boundary control problems. IMA J. Numer. Anal. To appear

  29. Gong, W., Yan, N.: Mixed finite element method for Dirichlet boundary control problem governed by elliptic PDEs. SIAM J. Control Optim. 49(3), 984–1014 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gunzburger, M.D., Hou, L.S., Svobodny, T.P.: Analysis and finite element approximation of optimal control problems for the stationary Navier–Stokes equations with Dirichlet controls. RAIRO Modél. Math. Anal. Numér. 25(6), 711–748 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gunzburger, M.D., Manservisi, S.: The velocity tracking problem for Navier–Stokes flows with boundary control. SIAM J. Control Optim. 39(2), 594–634 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gunzburger, M.D., Hou, L.S., Svobodny, T.P.: Boundary velocity control of incompressible flow with an application to viscous drag reduction. SIAM J. Control Optim. 30(1), 167–181 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gunzburger, M.D., Nicolaides, R.A.: An algorithm for the boundary control of the wave equation. Appl. Math. Lett. 2(3), 225–228 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hinze, M., Kunisch, K.: Second order methods for boundary control of the instationary Navier–Stokes system. ZAMM Z. Angew. Math. Mech. 84(3), 171–187 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hou, L.S., Ravindran, S.S.: A penalized Neumann control approach for solving an optimal Dirichlet control problem for the Navier–Stokes equations. SIAM J. Control Optim. 36(5), 1795–1814 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lehrenfeld, C.: Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems. Master’s thesis, RWTH Aachen, May (2010)

  37. Leykekhman, D.: Investigation of commutative properties of discontinuous Galerkin methods in pde constrained optimal control problems. J. Sci. Comput. 53(3), 483–511 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, B., Xie, X.: Analysis of a family of HDG methods for second order elliptic problems. J. Comput. Appl. Math. 307, 37–51 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu, J., Wang, Z.: Non-commutative discretize-then-optimize algorithms for elliptic PDE-constrained optimal control problems. J. Comput. Appl. Math. 362, 596–613 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu, W., Yang, D., Yuan, L., Ma, C.: Finite element approximations of an optimal control problem with integral state constraint. SIAM J. Numer. Anal. 48(3), 1163–1185 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mateos, M., Neitzel, I.: Dirichlet control of elliptic state constrained problems. Comput. Optim. Appl. 63(3), 825–853 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. May, S., Rannacher, R., Vexler, B.: Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems. SIAM J. Control Optim. 51(3), 2585–2611 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Meyer, C., Rösch, A.: Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43(3), 970–985 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mustapha, K., Nour, M., Cockburn, B.: Convergence and superconvergence analyses of HDG methods for time fractional diffusion problems. Adv. Comput. Math. 42(2), 377–393 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations. J. Comput. Phys. 228(9), 3232–3254 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations. J. Comput. Phys. 228(23), 8841–8855 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Eng. 199(9–12), 582–597 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Of, G., Phan, T.X., Steinbach, O.: An energy space finite element approach for elliptic Dirichlet boundary control problems. Numer. Math. 129(4), 723–748 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Oikawa, I.: A hybridized discontinuous Galerkin method with reduced stabilization. J. Sci. Comput. 65(1), 327–340 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Qiu, W., Shen, J., Shi, K.: An HDG method for linear elasticity with strong symmetric stresses. Math. Comput. 87(309), 69–93 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. Qiu, W., Shi, K.: An HDG method for convection diffusion equation. J. Sci. Comput. 66(1), 346–357 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. Qiu, W., Shi, K.: A superconvergent HDG method for the incompressible Navier–Stokes equations on general polyhedral meshes. IMA J. Numer. Anal. 36(4), 1943–1967 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. Ravindran, S.S.: Finite element approximation of Dirichlet control using boundary penalty method for unsteady Navier–Stokes equations. ESAIM Math. Model. Numer. Anal. 51(3), 825–849 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  54. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2008)

    Book  MATH  Google Scholar 

  55. Sayas, F.-J., Brown, T.S., Hassell, M.E.: Variational Techniques for Elliptic Partial Differential Equations. CRC Press, Boca Raton, FL (2019)

    Book  MATH  Google Scholar 

  56. Spasov, Y., Kunisch, K.: Dynamical system based optimal control of incompressible fluids. Boundary control. Eur. J. Mech. B Fluids 25(2), 153–163 (2006)

  57. Stanglmeier, M., Nguyen, N.C., Peraire, J., Cockburn, B.: An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation. Comput. Methods Appl. Mech. Eng. 300, 748–769 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  58. Stavre, R.: A boundary control problem for the blood flow in venous insufficiency. The general case. Nonlinear Anal. Real World Appl. 29, 98–116 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  59. Vexler, B.: Finite element approximation of elliptic Dirichlet optimal control problems. Numer. Funct. Anal. Optim. 28(7–8), 957–973 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  60. Warburton, T., Hesthaven, J.S.: On the constants in \(hp\)-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Eng. 192(25), 2765–2773 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  61. Zhang, X., Zhang, Y., Singler, J.R.: An optimal EDG method for distributed control of convection diffusion PDEs. Int. J. Numer. Anal. Model. 16(4), 519–542 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for their comments, which helped improve the manuscript. W. Hu was supported in part by a postdoctoral fellowship for the annual program on Control Theory and its Applications at the Institute for Mathematics and its Applications (IMA) at the University of Minnesota, and also the DIG and FY 2018 ASR+1 Program at Oklahoma State University. J. Singler and Y. Zhang were supported in part by National Science Foundation grant DMS-1217122. J. Singler and Y. Zhang thank the IMA for funding research visits, during which some of this work was completed. X. Zheng thanks Missouri University of Science and Technology for hosting him as a visiting scholar; some of this work was completed during his research visit. The authors thank Bernardo Cockburn for many valuable conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Singler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Local solver

Local solver

By simple algebraic operations in Eq. (17), we obtain the following formulas for the matrices \( G_1 \), \( G_2 \), \( H_1 \), and \( H_2 \) in (18):

$$\begin{aligned} G_1&= B_1^{-1}B_2(B_4+B_2^TB_1^{-1}B_2)^{-1}(B_5+B_2^TB_1^{-1}B_3)-B_1^{-1}B_3,\\ G_2&= -\,(B_4+B_2^TB_1^{-1}B_2)^{-1}(B_5+B_2^TB_1^{-1}B_3),\\ H_1&= -\,B_1^{-1}B_2(B_4+B_2^TB_1^{-1}B_2)^{-1},\\ H_2&= (B_4+B_2^TB_1^{-1}B_2)^{-1}. \end{aligned}$$

In general, this process is impractical; however, for the HDG method described in this work, these matrices can be easily computed. This is one of the advantages of the HDG method. We briefly describe this process below.

Since the spaces \( \varvec{V}_h \) and \( W_h \) consist of discontinuous polynomials, some of the system matrices are block diagonal and each block is small and symmetric positive definite. Let us call a matrix of this form a SSPD block diagonal matrix. The inverse of a SSPD block diagonal matrix is another SSPD block diagonal matrix, and the inverse can be easily constructed by computing the inverse of each small block. Furthermore, the inverse of each small block can be computed independently; and therefore computing the inverse can be easily done in parallel.

It can be checked that \( B_1 \) is a SSPD block diagonal matrix, and therefore \( B_1^{-1} \) is easily computed and is also a SSPD block diagonal matrix. Therefore, the matrices \( G_1 \), \( G_2 \), \( H_1 \), and \( H_2 \) are easily computed if \( B_4 + B_2^T B_1^{-1} B_2 \) is also easily inverted. We show below that this is the case.

First, it can be checked that \( B_2 \) is block diagonal with small blocks, but the blocks are not symmetric or definite. This implies \(B_2^T B_1^{-1} B_2\) is block diagonal with small nonnegative definite blocks. Next, \(B_4 = \begin{bmatrix} A_5&0\\ -A_4&A_5 \end{bmatrix}\), where \(A_4\) and \(A_5\) are both SSPD block diagonal. Due to the structure of \( B_1 \) and \( B_2 \), the matrix \(B_2^TB_1^{-1}B_2 + B_4\) has the form \(\begin{bmatrix} C_1&0\\ -A_4&C_2 \end{bmatrix}, \) where \( C_1 \) and \( C_2 \) are SSPD block diagonal. The inverse can be easily computed using the formula

$$\begin{aligned}\begin{bmatrix} C_1&0\\ -A_4&C_2 \end{bmatrix}^{-1} = \begin{bmatrix} C_1^{-1}&0\\ C_2^{-1} A_4 C_1^{-1}&C_2^{-1} \end{bmatrix}. \end{aligned}$$

Furthermore, \( C_1^{-1} \), \(C_2^{-1}\) and \( C_2^{-1} A_4 C_1^{-1} \) are both SSPD block diagonal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Shen, J., Singler, J.R. et al. A superconvergent hybridizable discontinuous Galerkin method for Dirichlet boundary control of elliptic PDEs. Numer. Math. 144, 375–411 (2020). https://doi.org/10.1007/s00211-019-01090-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-019-01090-2

Mathematics Subject Classification

Navigation