Skip to main content
Log in

A hybridizable discontinuous Galerkin method for fractional diffusion problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We study the use of the hybridizable discontinuous Galerkin (HDG) method for numerically solving fractional diffusion equations of order \(-\alpha \) with \(-1<\alpha <0\). For exact time-marching, we derive optimal algebraic error estimates assuming that the exact solution is sufficiently regular. Thus, if for each time \(t \in [0,T]\) the approximations are taken to be piecewise polynomials of degree \(k\ge 0\) on the spatial domain \(\varOmega \), the approximations to \(u\) in the \(L_\infty \bigr (0,T;L_2(\varOmega )\bigr )\)-norm and to \(\nabla u\) in the \(L_\infty \bigr (0,T;\mathbf{L}_2(\varOmega )\bigr )\)-norm are proven to converge with the rate \(h^{k+1}\), where \(h\) is the maximum diameter of the elements of the mesh. Moreover, for \(k\ge 1\) and quasi-uniform meshes, we obtain a superconvergence result which allows us to compute, in an elementwise manner, a new approximation for \(u\) converging with a rate of \(\sqrt{\log (T h^{-2/(\alpha +1)})}\, \,h^{k+2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balakrishnan, V.: Anomalous diffusion in one dimension. Phys. A 132, 569–580 (1985)

    Article  MATH  Google Scholar 

  2. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  3. Chabaud, B., Cockburn, B.: Uniform-in-time superconvergence of HDG methods for the heat equation. Math. Comput. 81, 107–129 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, C.-M., Liu, F., Anh, V., Turner, I.: Numerical methods for solving a two-dimensional variable-order anomalous sub-diffusion equation. Math. Comput. 81, 345–366 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, C.-M., Liu, F., Turner, I., Anh, V.: Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation. Numer. Algor 54, 1–21 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cockburn, B., Qiu, W., Shi, K.: Conditions for superconvergence of HDG methods for second-order elliptic problems. Math. Comput. 81, 1327–1353 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cockburn, B., Qiu, W., Shi, K.: Conditions for superconvergence of HDG methods on curvilinear elements for second-order elliptic problems. SIAM J. Numer. Anal. 50, 1417–1432 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusive-wave equations. Math. Comput. 75, 673–696 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228, 7792–7804 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cui, M.: Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation. Numer. Algor. 62, 383–409 (2013)

    Article  MATH  Google Scholar 

  13. Gao, G.G., Sun, Z.Z.: A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 230, 6061–6074 (2011)

    Article  MathSciNet  Google Scholar 

  14. Gastaldi, L., Nochetto, R.H.: Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations. RAIRO Modél. Math. Anal. Numér. 23, 103–128 (1989)

    MATH  MathSciNet  Google Scholar 

  15. Henry, B.I., Wearne, S.L.: Fractional reaction-diffusion. Physica A 276, 448–455 (2000)

    Article  MathSciNet  Google Scholar 

  16. Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51, 445–466 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. vol. 204. (North-Holland Mathematics Studies), (2006)

  18. Kirby, R.M., Sherwin, S.J., Cockburn, B.: To HDG or to CG: a comparative study. J. Sci. Comput. 51, 183–212 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–936 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu, F., Yang, C., Burrage, K.: Numerical method and analytical technique of the modified anomalous sub-diffusion equation with a nonlinear source term. Comput. Appl. Math. 231, 160–176 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. López-Fernández, M., Palencia, C., Schädle, A.: A spectral order method for inverting sectorial Laplace transforms. SIAM J. Numer. Anal. 44, 1332–1350 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mathai, A.M., Saxena, R.K., Haubold, H.J.: The H-function: theory and applications. Springer, New York (2011)

    Google Scholar 

  23. McLean, W.: Regularity of solutions to a time-fractional diffusion equation. ANZIAM J. 52, 123–138 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. McLean, W.: Fast summation by interval clustering for an evolution equation with memory. SIAM J. Sci. Comput. 34, A3039–A3056 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. McLean, W., Mustapha, K.: Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation. Numer. Algor. 52, 69–88 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. McLean, W., Thomée, V.: Numerical solution via Laplace transforms of a fractional order evolution equation. J. Integral Equ. Appl. 22, 57–94 (2010)

    Article  MATH  Google Scholar 

  28. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, R161–R208 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Mustapha, K.: An implicit finite difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements. IMA J. Numer. Anal. 31, 719–739 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mustapha, K., AlMutawa, J.: A finite difference method for an anomalous sub-diffusion equation, theory and applications. Numer. Algor. 61, 525–543 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Mustapha, K., McLean, W.: Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer. Algor. 56, 159–184 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Mustapha, K., McLean, W.: Uniform convergence for a discontinuous Galerkin, time stepping method applied to a fractional diffusion equation. IMA J. Numer. Anal. 32, 906–925 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51, 491–515 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  35. Mustapha, K., Schötzau, D.: Well-posedness of \(hp-\)version discontinuous Galerkin methods for fractional diffusion wave equations, IMA J. Numer. Anal., doi:10.1093/imanum/drt048. (2013)

  36. Nguyen, N.C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods, Proceedings of the international conference on spectral and high order methods (Trondheim, Norway), Lect. Notes Comput. Sci. Eng., Springer (2009)

  37. Podlubny, I.: Fractional differential equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  38. Quintana-Murillo, J., Yuste, S.B.: An explicit difference method for solving fractional diffusion and diffusion-wave equations in the Caputo form. J. Comput. Nonlin. Dyn. 6, 021014 (2011)

    Article  Google Scholar 

  39. Schädle, A., López-Fernandez, M., Lubich, C.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28, 421–438 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  40. Schneider, W.R., Wyss, W.: Fractional diffusion and wave equations. J. Math. Phys. 30, 134–144 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  41. Smith, P., Morrison, I., Wilson, K., Fernandez, N., Cherry, R.: Anomalous diffusion of major histocompatability complex class I molecules on HeLa cells determined by single particle tracking. Biophys. J. 76, 3331–3344 (1999)

    Article  Google Scholar 

  42. Stenberg, R.: A family of mixed finite elements for the elasticity problem. Numer. Math. 53, 513–538 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  43. Stenberg, R.: Postprocessing schemes for some mixed finite elements. RAIRO Modél. Math. Anal. Numér. 25, 151–167 (1991)

    MATH  MathSciNet  Google Scholar 

  44. Tarasov, V.E.: Fractional dynamics: applications of fractional calculus to dynamics of particles. Fields and media (Nonlinear Physical Science), Springer (2011)

  45. Wyss, W.: Fractional diffusion equation. J. Math. Phys. 27, 2782–2785 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  46. Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216, 264–274 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  47. Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  48. Yuste, S.B., Quintana-Murillo, J.: On three explicit difference schemes for fractional diffusion and diffusion-wave equations. Phys. Scripta T136, 014025 (2009)

    Article  Google Scholar 

  49. Zhang, Y.-N., Sun, Z.-Z.: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 230, 8713–8728 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  50. Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation. SIAM J. Numer. Anal. 46, 1079–1095 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  51. Zhuang, P., Liu, F., Anh, V., Turner, I.: Stability and convergence of an implicit numerical method for the nonlinear fractional reaction-sub-diffusion process. IMA J. Appl. Math. 74, 645–667 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kassem Mustapha.

Additional information

The valuable comments of the editor and the referees improved the paper. The support of the Science Technology Unit at KFUPM through King Abdulaziz City for Science and Technology (KACST) under National Science, Technology and Innovation Plan (NSTIP) project No. 13-MAT1847-04 is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cockburn, B., Mustapha, K. A hybridizable discontinuous Galerkin method for fractional diffusion problems. Numer. Math. 130, 293–314 (2015). https://doi.org/10.1007/s00211-014-0661-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0661-x

Mathematics Subject Classification

Navigation