Skip to main content
Log in

Dirichlet control of elliptic state constrained problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We study a state constrained Dirichlet optimal control problem and derive a priori error estimates for its finite element discretization. Additional control constraints may or may not be included in the formulation. The pointwise state constraints are prescribed in the interior of a convex polygonal domain. We obtain a priori error estimates for the \(L^2(\varGamma )\)-norm of order \(h^{1-1/p}\) for pure state constraints and \(h^{3/4-1/(2p)}\) when additional control constraints are present. Here, p is a real number that depends on the largest interior angle of the domain. Unlike in e.g. distributed or Neumann control problems, the state functions associated with \(L^2\)-Dirichlet control have very low regularity, i.e. they are elements of \(H^{1/2}(\varOmega )\). By considering the state constraints in the interior we make use of higher interior regularity and separate the regularity limiting influences of the boundary on the one-hand, and the measure in the right-hand-side of the adjoint equation associated with the state constraints on the other hand. We note in passing that in case of control constraints, these may be interpreted as state constraints on the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apel, T., Mateos, M., Pfefferer, J., Rösch, A.: On the regularity of the solutions of Dirichlet optimal control problems in polygonal domains (2014). Submitted

  2. Berggren, M.: Approximations of very weak solutions to boundary-value problems. SIAM J. Numer. Anal. 42(2), 860–877 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bergounioux, M., Ito, K., Kunisch, K.: Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37(4), 1176–1194 (1999). doi:10.1137/S0363012997328609. (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourdaud, G., Sickel, W.: Composition operators on function spaces with fractional order of smoothness. In: Harmonic Analysis and Nonlinear Partial Differential Equations, RIMS Kôkyûroku Bessatsu, B26, pp. 93–132. Res. Inst. Math. Sci. (RIMS), Kyoto (2011)

  5. Bramble, J.H., King, J.T.: A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries. Math. Comput. 63(207), 1–17 (1994). doi:10.2307/2153559

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    Book  MATH  Google Scholar 

  7. Casas, E.: Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24(6), 1309–1318 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Casas, E., Günther, A., Mateos, M.: A paradox in the approximation of Dirichlet control problems in curved domains. SIAM J. Control Optim. 49(5), 1998–2007 (2011). doi:10.1137/100794882

    Article  MathSciNet  MATH  Google Scholar 

  9. Casas, E., Mateos, M.: Uniform convergence of the FEM. Applications to state constrained control problems. Comput. Appl. Math. 21(1), 67–100 (2002). Special issue in memory of Jacques-Louis Lions

    MathSciNet  MATH  Google Scholar 

  10. Casas, E., Mateos, M.: Numerical approximation of elliptic control problems with finitely many pointwise constraints. Comput. Optim. Appl. 51, 1319–1343 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Casas, E., Mateos, M., Raymond, J.P.: Penalization of Dirichlet optimal control problems. ESAIM Control Optim. Calc. Var. 15(4), 782–809 (2009). doi:10.1051/cocv:2008049

    Article  MathSciNet  MATH  Google Scholar 

  12. Casas, E., Mateos, M., Vexler, B.: New regularity results and improved error estimates for optimal control problems with state constraints. ESAIM Control Optim. Calc. Var. 20(3), 803–822 (2014). doi:10.1051/cocv/2013084

    Article  MathSciNet  MATH  Google Scholar 

  13. Casas, E., Raymond, J.P.: Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations. SIAM J. Control Optim. 45(5), 1586–1611 (2006). doi:10.1137/050626600. (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  14. Casas, E., Raymond, J.P.: The stability in \(W^{s, p}(\varGamma )\) spaces of \(L^2\)-projections on some convex sets. Numer. Funct. Anal. Optim. 27(2), 117–137 (2006). doi:10.1080/01630560600569940

    Article  MathSciNet  MATH  Google Scholar 

  15. Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Handbook of Numerical Analysis, Vol. II, Handbook of Numerical Analysis, II, pp. 17–351. North-Holland (1991)

  16. Deckelnick, K., Günther, A., Hinze, M.: Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains. SIAM J. Control Optim. 48(4), 2798–2819 (2009). doi:10.1137/080735369

    Article  MathSciNet  MATH  Google Scholar 

  17. Deckelnick, K., Hinze, M.: Convergence of a finite element approximation to a state-constrained elliptic control problem. SIAM J. Numer. Anal. 45(5), 1937–1953 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  19. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints, Mathematical Modelling: Theory and Applications, vol. 23. Springer, New York (2009)

    Google Scholar 

  20. Ito, K., Kunisch, K.: Semi-smooth Newton methods for state-constrained optimal control problems. Syst. Control Lett. 50(3), 221–228 (2003). doi:10.1016/S0167-6911(03)00156-7

    Article  MathSciNet  MATH  Google Scholar 

  21. Krumbiegel, K., Meyer, C., Rösch, A.: A priori error analysis for linear quadratic elliptic Neumann boundary control problems with control and state constraints. SIAM J. Control Optim. 48(8), 5108–5142 (2010). doi:10.1137/090746148

    Article  MathSciNet  MATH  Google Scholar 

  22. Leykekhman, D., Meidner, D., Vexler, B.: Optimal error estimates for finite element discretization of elliptic optimal control problems with finitely many pointwise state constraints. Comput. Optim. Appl. 55(3), 769–802 (2013). doi:10.1007/s10589-013-9537-8

    Article  MathSciNet  MATH  Google Scholar 

  23. May, S., Rannacher, R., Vexler, B.: Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems. SIAM J. Control Optim. 51(3), 2585–2611 (2013). doi:10.1137/080735734

    Article  MathSciNet  MATH  Google Scholar 

  24. Merino, P., Neitzel, I., Tröltzsch, F.: On linear-quadratic elliptic control problems of semi-infinite type. Appl. Anal. 90(6), 1047–1074 (2011). doi:10.1080/00036811.2010.489187

    Article  MathSciNet  MATH  Google Scholar 

  25. Merino, P., Tröltzsch, F., Vexler, B.: Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space. M2AN. Math. Model. Numer. Anal. 44(1), 167–188 (2010). doi:10.1051/m2an/2009045

    Article  MathSciNet  MATH  Google Scholar 

  26. Meyer, C.: Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Control Cybern. 37(1), 51–83 (2008)

    MATH  Google Scholar 

  27. Rösch, A., Steinig, S.: A priori error estimates for a state-constrained elliptic optimal control problem. ESAIM Math. Model. Numer. Anal. 46(5), 1107–1120 (2012). doi:10.1051/m2an/2011076

    Article  MathSciNet  MATH  Google Scholar 

  28. Schatz, A.H., Wahlbin, L.B.: Interior maximum norm estimates for finite element methods. Math. Comput. 31(138), 414–442 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15, 189–258 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first author was partially supported by the Spanish Ministerio of Economía y Competitividad under project MTM2011-22711.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Mateos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mateos, M., Neitzel, I. Dirichlet control of elliptic state constrained problems. Comput Optim Appl 63, 825–853 (2016). https://doi.org/10.1007/s10589-015-9784-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-015-9784-y

Keywords

Mathematics Subject Classification

Navigation