Skip to main content

Advertisement

Log in

Antibiofilm activity of mesoporous silica nanoparticles against the biofilm associated infections

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

In pharmaceutical industries, various chemical carriers are present which are used for drug delivery to the correct target sites. The most popular and upcoming drug delivery carriers are mesoporous silica nanoparticles (MSN). The main reason for its popularity is its ability to be specific and optimize the drug delivery process in a controlled manner. Nowadays, MSNs are widely used to eradicate various microbial infections, especially the ones related to biofilms. Biofilms are sessile groups of cells that live by forming a consortium and exhibit antibacterial resistance (AMR). They exhibit AMR by extracellular polymeric substances (EPS) and various quorum sensing (QS) signaling molecules. Usually, bacterial and fungal cells are capable of forming biofilms. These biofilms are pathogenic. In the majority of the cases, biofilms cause nosocomial diseases. This review will focus on the antibiofilm activities of MSN, its mechanism of target-specific drug delivery, and its ability to disrupt the bacterial biofilms inhibiting the infection. The review will also discuss various mechanisms for the delivery of pharmaceutical molecules by the MSNs to inhibit the bacterial biofilms, and lastly, we will talk about the different types of MSNs and their antibiofilm activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Abo-zeid Y, Williams GR (2020) The potential anti-infective applications of metal oxide nanoparticles: a systematic review. Wiley Interdiscip Rev Nanomed Nanobiotechnol 12(2):1–36. https://doi.org/10.1002/wnan.1592

    Article  Google Scholar 

  • Ahmadi E, Dehghannejad N, Hashemikia S, Ghasemnejad M, Tabebordbar H (2014) Synthesis and surface modification of mesoporous silica nanoparticles and its application as carriers for sustained drug delivery. Drug Deliv 21(3):164–172. https://doi.org/10.3109/10717544.2013.838715

    Article  CAS  PubMed  Google Scholar 

  • Araújo LAD, Addor F, Campos PMBGM (2016) Use of silicon for skin and hair care: an approach of chemical forms available and efficacy. An Bras Dermatol 91:0331–0335

    Article  Google Scholar 

  • Arciola CR, Campoccia D, Montanaro L (2018) Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol 16:397–409

    Article  CAS  PubMed  Google Scholar 

  • Arias LS, Pessan JP, Vieira APM, Tmt DL, Delbem ACB, Monteiro DR (2018) Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics. 7:2. https://doi.org/10.3390/antibiotics7020046

    Article  CAS  Google Scholar 

  • Bai Y-M, Mao J, Xiong LD et al (2019) Bimodal antibacterial system based on quaternary ammonium silane-coupled core-shell hollow mesoporous silica. Acta Biomater 85:229–240. https://doi.org/10.1016/j.actbio.2018.12.037

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, An N, Chen D, Liu YZ, Liu CP, Yao H, Wang C, Song X, Tian W (2020) Facile construction of shape-regulated βcyclodextrin-based supramolecular self-assemblies for drug delivery. Carbohydr Polym 231:115714

    Article  CAS  PubMed  Google Scholar 

  • Balaure PC, Boarca B, Popescu RC et al (2017) Bioactive mesoporous silica nanostructures with anti-microbial and anti-biofilm properties. Int J Pharm 531(1):35–46. https://doi.org/10.1016/j.ijpharm.2017.08.062

    Article  CAS  PubMed  Google Scholar 

  • Barani M, Paknia F, Roostaee M, Kavyani B, Kalantar-Neyestanaki D, Ajalli N, Amirbeigi A (2023) Niosome as an effective nanoscale solution for the treatment of microbial infections. Biomed Res Int 2023:9933283, 18 pages. https://doi.org/10.1155/2023/9933283

  • Bardbari AM, Arabestani MR, Karami M, Keramat F, Aghazadeh H, Alikhani MY, Bagheri KP (2018) Highly synergistic activity of melittin with imipenem and colistin in biofilm inhibition against multidrug-resistant strong biofilm producer strains of Acinetobacter Baumannii. Eur J Clin Microbiol Infect Dis 37:443–454

    Article  CAS  PubMed  Google Scholar 

  • Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, ... Bradbury MS (2011) Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Investig 121(7):2768–2780

  • Bernardos A, Piacenza E, Sancenón F, Hamidi M, Maleki A, Turner RJ, Martínez-Máñez R (2019) Mesoporous silica-based materials with bactericidal properties. Small. 15:1900669. https://doi.org/10.1002/smll.201900669

    Article  CAS  Google Scholar 

  • Bharti C, Nagaich U, Pal AK, Gulati N (2015) Mesoporous silica nanoparticles in target drug delivery system: A review. Int J Pharm Investig 5(3):124–33. https://doi.org/10.4103/2230-973X.160844

  • Braun K, Pochert A, Lindén M et al (2016) Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides. J Colloid Interface Sci 475:161–170. https://doi.org/10.1016/j.jcis.2016.05.002

    Article  CAS  PubMed  Google Scholar 

  • Budimir M, Jijie R, Ye R, Barras A, Melinte S, Silhanek A, Markovic Z, Szunerits S, Boukherroub R (2019) Efficient capture and photothermal ablation of planktonic bacteria and biofilms using reduced graphene oxide−polyethyleneimine flexible nanoheaters. J Mater Chem B 7:2771–2781

    Article  CAS  PubMed  Google Scholar 

  • Bukara K, Schueller L, Rosier J, Martens MA, Daems T, Verheyden L, Eelen S, Van Speybroeck M, Libanati C, Martens JA, Van Den Mooter G, Fre´rart F, Jolling K, De Gieter M, Bugarski B, Kiekens F (2016) Eur J Pharm Biopharm 108:220–225

  • Burns AA, Vider J, Ow H, Herz E, Penate-Medina O, Baumgart M, ... Bradbury M (2009) Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett 9(1):442–448

  • Carvalho GC, Sábio RM, de Cássia Ribeiro T, Monteiro AS, Pereira DV, Ribeiro SJL, Chorilli M (2020) Highlights in mesoporous silica nanoparticles as a multifunctional controlled drug delivery nanoplatform for infectious diseases treatment. Pharm Res 37:191. https://doi.org/10.1007/s11095-020-02917-6

  • Castillo RR, Vallet-Regí M (2021) Recent advances toward the use of mesoporous silica nanoparticles for the treatment of bacterial infections. Int J Nanomed 16:4409–4430. https://doi.org/10.2147/IJN.S273064

    Article  Google Scholar 

  • Chang Z-M, Wang Z, MengLu M et al (2017) Janus silver mesoporous silica nanobullets with synergistic antibacterial functions. Colloids Surf B Biointerfaces 157:199–206. https://doi.org/10.1016/j.colsurfb.2017.05.079

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Chen H, Shi J (2013) In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater 25(23):3144–3176

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Liu Y, Lin A et al (2018) Folic acid-modified mesoporous silica nanoparticles with pH-responsiveness loaded with Amp for an enhanced effect against anti-drug-resistant bacteria by overcoming efflux pump systems. Biomater Sci 6(7):1923–1935. https://doi.org/10.1039/c8bm00262b

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Glackin CA, Horwitz MA, Zink JI (2019) Nanomachines and other caps on mesoporous silica nanoparticles for drug delivery. Acc Chem Res 52:1531–1542

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Xu C, He H (2019) Electrospinning of silica nanoparticles-entrapped nanofibers for sustained gentamicin release. Biochem Biophys Res Commun 516(4):1085–1089. https://doi.org/10.1016/j.bbrc.2019.06.163

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Cheng CA, Zink JI (2019) Spatial, temporal, and dose control of drug delivery using noninvasive magnetic stimulation. ACS Nano 13:1292–1308

    CAS  PubMed  Google Scholar 

  • Chen F, Nayak TR, Goel S, Valdovinos HF, Hong H, Theuer CP, … Cai W (2014) In vivo tumor vasculature targeted PET/NIRF imaging with TRC105(Fab)‐conjugated, dual‐labeled mesoporous silica nanoparticles. Mol Pharm 11(11):4007–4014. https://doi.org/10.1021/mp500306k

  • Chen L, Liu J, Zhang Y, Zhang G, Kang Y, Chen A, … Shao L (2018) The toxicity of silica nanoparticles to the immune system. Nanomedicine (London, England) 13(15):1939–1962. https://doi.org/10.2217/nnm-2018-0076

  • Chen H, Shen Z, Wu P et al (2020) Long effective tea tree oil/mesoporous silica sustained release system decorated by polyethyleneimine with high antibacterial performance. J Dispers Sci Technol 42(10):1448–1459. https://doi.org/10.1080/01932691.2020.1772816

    Article  CAS  Google Scholar 

  • Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S (2007) Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 28(29):4192–4199. https://doi.org/10.1016/j.biomaterials.2007.05.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Zhang Y, Deng W, Hu J (2020) Antibacterial and anticancer activities of asymmetric lollipop-like mesoporous silica nanoparticles loaded with curcumin and gentamicin sulfate. Colloids Surf B Biointerfaces 186:110744. https://doi.org/10.1016/j.colsurfb.2019.110744

    Article  CAS  PubMed  Google Scholar 

  • Chircov C, Spoială A, Păun C, Crăciun L, Ficai D, Ficai A, ... Turculeƫ ȘC (2020) Mesoporous silica platforms with potential applications in release and adsorption of active agents. Molecules 25(17):3814

  • Choi J, Burns AA, Williams RM, Zhou Z, Flesken-Nikitin A, Zipfel WR, ... Nikitin AY (2007) Core-shell silica nanoparticles as fluorescent labels for nanomedicine. J Biomed Opt 12(6):064007

  • Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay Method. Cancer Res 70:440–446

    Article  CAS  PubMed  Google Scholar 

  • Colilla M, Vallet-Regí M (2020) Targeted stimuli-responsive mesoporous silica nanoparticles for bacterial infection treatment. Int J Mol Sci 21:8605. https://doi.org/10.3390/ijms21228605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Azevedo M, Oliveira LF, Teles da Silva LV et al (2020) Antioxidant and antimicrobial activity of red propolis embedded mesoporous silica nanoparticles. Drug Dev Ind Pharm 46(7):1199–1208. https://doi.org/10.1080/03639045.2020.1782423

  • Deslouches B, Steckbeck JD, Craigo JK, Doi Y, Burns JL, Montelaro RC (2015) Engineered cationic antimicrobial peptides to overcome multidrug resistance by ESKAPE pathogens. Antimicrob Agents Chemother 59:1329–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinali R, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A (2017) Iron oxide nanoparticles in modern microbiology and biotechnology. Crit Rev Microbiol 43(4):493–507. https://doi.org/10.1080/1040841X.2016.1267708

    Article  CAS  PubMed  Google Scholar 

  • Duan X, Xiao J, Yin Q, Zhang Z, Yu H, Mao S, Li Y (2013) Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram. ACS Nano 7:5858–5869

    Article  CAS  PubMed  Google Scholar 

  • Durack E, Mallen S, O’Connor PM et al (2019) Protecting bactofencin A to enable its antimicrobial activity using mesoporous matrices. Int J Pharm 558(December2018):9–17. https://doi.org/10.1016/j.ijpharm.2018.12.035

    Article  CAS  PubMed  Google Scholar 

  • EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS), Younes M, Aggett P, Aguilar F, Crebelli R, Dusemund B, ... Lambré C (2018) Re‐evaluation of silicon dioxide (E 551) as a food additive. EFSA J 16(1):e05088

  • Encinas N, Angulo M, Astorga C, Colilla M, Izquierdo-Barba I, Vallet-Regí M (2019) Mixed-charge pseudo-zwitterionic mesoporous silica nanoparticles with low-fouling and reduced cell uptake properties. Acta Biomater 84:317–327. https://doi.org/10.1016/j.actbio.2018.12.012

    Article  CAS  PubMed  Google Scholar 

  • Fischbach MA, Walsh CT (2009) Antibiotics for emerging pathogens. Science 325:1089–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Chen Y, Ji X, He X, Yin Q, Zhang Z, Shi J, Li Y (2011) Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano 5:9788–9798

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Zhou H, Shen Z et al (2020) Synergistic antimicrobial activities of tea tree oil loaded on mesoporous silica encapsulated by polyethyleneimine. J Dispers Sci Technol 41(12):1859–1871. https://doi.org/10.1080/01932691.2019.1637755

    Article  CAS  Google Scholar 

  • Gao L, Li M, Ehrmann S, Tu Z, Haag R (2019) Positively charged nanoaggregates based on zwitterionic pillar [5] arene that combat planktonic bacteria and disrupt biofilms. Angew Chem Int Ed 58:3645−3649

  • Geilich BM, Gelfat I, Sridhar S, van de Ven AL, Webster TJ (2017) Superparamagnetic iron oxide-encapsulating polymersome nanocarriers for biofilm eradication. Biomaterials 119:78–85

    Article  CAS  PubMed  Google Scholar 

  • Ghaseminezhad SM, Shojaosadati SA, Meyer RL (2018) Ag/ Fe3O4 nanocomposites penetrate and eradicate s. aureus biofilm in an in vitro chronic wound model. Colloids Surf B 163:192−200

  • Gimenez C, de la Torre C, Gorbe M, Aznar E, Sancenon F, Murguia JR, … Amoros P (2015) Gated mesoporous silica nanoparticles for the controlled delivery of drugs in cancer cells. Langmuir 31(12):3753–3762. https://doi.org/10.1021/acs.langmuir.5b00139

  • Giri S, Trewyn BG, Stellmaker MP, Lin VS (2005) Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew Chem (Int Ed Engl) 44(32):5038–5044. https://doi.org/10.1002/anie.200501819

    Article  CAS  PubMed  Google Scholar 

  • Gisbert-Garzarán M, Manzano M, Vallet-Regí M (2020) Mesoporous silica nanoparticles for the treatment of complex bone diseases: bone cancer, bone infection and osteoporosis. Pharmaceutics 12:83. https://doi.org/10.3390/pharmaceutics12010083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez B, Colilla M, Diez J, Pedraza D, Guembe M, Izquierdo-Barba I, Vallet-Regi M (2018) Mesoporous silica nanoparticles decorated with polycationic dendrimers for infection treatment. Acta Biomater 68:261–271. https://doi.org/10.1016/j.actbio.2017.12.041

    Article  CAS  PubMed  Google Scholar 

  • González B, Colilla M, Díez J et al (2018) Mesoporous silica nanoparticles decorated with polycationic dendrimers for infection treatment. Acta Biomater 68:261–271. https://doi.org/10.1016/j.actbio.2017.12.041

    Article  CAS  PubMed  Google Scholar 

  • Gounani Z, Asadollahi MA, Pedersen JN et al (2019) Mesoporous silica nanoparticles carrying multiple antibiotics provide enhanced synergistic effect and improved biocompatibility. Colloids Surf B Biointerfaces 175:498–508. https://doi.org/10.1016/j.colsurfb.2018.12.035

    Article  CAS  PubMed  Google Scholar 

  • Greco O, Folkes LK, Wardman P, Tozer GM, Dachs GU (2000) Development of a novel enzyme/prodrug combination for gene therapy of cancer: horseradish peroxidase/indole-3-acetic acid. Cancer Gene Ther 7(11):1414–1420. https://doi.org/10.1038/sj.cgt.7700258

    Article  CAS  PubMed  Google Scholar 

  • Green DL, Lin JS, Lam Y-F, Hu MZC, Schaefer DW, Harris MT (2003) Size, volume fraction, and nucleation of Stober silica nanoparticles. J Colloid Interface Sci 266(2):346–358. https://doi.org/10.1016/s0021-9797(03)00610-6

    Article  CAS  PubMed  Google Scholar 

  • Grün M, Lauer I, Unger KK (1997) The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv Mater 9(3):254–257. https://doi.org/10.1002/adma.19970090317

    Article  Google Scholar 

  • Hachemaoui M, Boukoussa B, Mokhtar A et al (2020) Dyes adsorption, antifungal and antibacterial properties of metal loaded mesoporous silica: effect of metal and calcination treatment. Mater Chem Phys 256:123704. https://doi.org/10.1016/j.matchemphys.2020.123704

    Article  CAS  Google Scholar 

  • Hadipour Moghaddam SP, Mohammadpour R, Ghandehari H (2019) In vitro and in vivo evaluation of degradation, toxicity, biodistribution, and clearance of silica nanoparticles as a function of size, porosity, density, and composition. J Control Release 311–312:1–15. https://doi.org/10.1016/j.jconrel.2019.08.028

    Article  CAS  PubMed  Google Scholar 

  • Hakkarainen B, Fujita K, Immel S, Kenne L, Sandström C (2005) 1H NMR studies on the hydrogen-bonding network in mono-Altroβ-cyclodextrin and its complex with adamantane-1-carboxylic acid. Carbohydr Res 340:1539–1545

    Article  CAS  PubMed  Google Scholar 

  • Han L, Tang C, Yin C (2015) Dual-targeting and pH/redox responsive multi-layered nanocomplexes for smart co-delivery of doxorubicin and SiRNA. Biomaterials 60:42–52

    Article  CAS  PubMed  Google Scholar 

  • Hao N, Li L, Tang F (2014) Shape-mediated biological effects of mesoporous silica nanoparticles. J Biomed Nanotechnol 10(10):2508–2538. https://doi.org/10.1166/jbn.2014.1940

    Article  CAS  PubMed  Google Scholar 

  • Høiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PØ, Givskov M, Tolker-Nielsen T, Bjarnsholt T (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3:55–65

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang G, Paula AJ, Hunter EE, Liu Y, Babeer A, Karabucak B, Stebe K, Kumar V, Steager E, Koo H (2019) Catalytic antimicrobial robots for biofilm eradication. Sci Robot 4:eaaw2388

  • Izquierdo-Barba I, Sánchez-Salcedo S, Colilla M et al (2011) Inhibition of bacterial adhesion on biocompatible zwitterionic SBA-15 mesoporous materials. Acta Biomater 7(7):2977–2985. https://doi.org/10.1016/j.actbio.2011.03.005

    Article  CAS  PubMed  Google Scholar 

  • Jeelani PG, Mulay P, Venkat R, Ramalingam C (2019) Multifaceted application of silica nanoparticles. A review. Silicon. https://doi.org/10.1007/s12633-019-00229-y

  • Ji F, Sun H, Qin Z et al (2018) Engineering polyzwitterion and polydopamine decorated doxorubicin-loaded mesoporous silica nanoparticles as a pH-sensitive drug delivery. Polymers (Basel) 10(3):1–17. https://doi.org/10.3390/polym10030326

    Article  CAS  Google Scholar 

  • Jiménez-Jiménez C, Manzano M, Vallet-Regí M (2020) Nanoparticles coated with cell membranes for biomedical applications. Biology (Basel) 9:406. https://doi.org/10.3390/biology9110406

    Article  CAS  PubMed  Google Scholar 

  • Kim IY, Joachim E, Choi H, Kim K (2015) Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine 11(6):1407–1416. https://doi.org/10.1016/j.nano.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kim CS, Ignacio RM, Kim DH, Sajo ME, Maeng EH, … Kim SK (2014) Immunotoxicity of silicon dioxide nanoparticles with different sizes and electrostatic charge. Int J Nanomed 9(Suppl. 2):183–193. https://doi.org/10.2147/ijn.S57934

  • Knowles BR, Wagner P, Maclaughlin S, Higgins MJ, Molino PJ (2017) Silica nanoparticles functionalized with zwitterionic sulfobetaine siloxane for application as a versatile antifouling coating system. ACS Appl Mater Interfaces 9(22):18584–18594. https://doi.org/10.1021/acsami.7b04840

    Article  CAS  PubMed  Google Scholar 

  • Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 15:740–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koppen BC, Mulder PP, de Boer L, Riool M, Drijfhout JW, Zaat SA (2019) Synergistic microbicidal effect of cationic antimicrobial peptides and teicoplanin against planktonic and biofilm-encased Staphylococcus Aureus. Int J Antimicrob Agents 53:143–151

    Article  CAS  PubMed  Google Scholar 

  • Kuthati Y, Kankala RK, Lin SX, Weng CF, Lee CH (2015) pH- Triggered Controllable release of silver-Indole-3 acetic acid complexes from mesoporous silica nanoparticles (IBN-4) for effectively killing malignant bacteria. Mol Pharm 12(7):2289–2304. https://doi.org/10.1021/mp500836w

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Kim K-J, Lee DG (2014) A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli. BioMetals 27(6):1191–1201. https://doi.org/10.1007/s10534-014-9782-z80

    Article  CAS  PubMed  Google Scholar 

  • Leng D, Li Y, Zhu J et al (2020) The antibiofilm activity and mechanism of nanosilver- and nanozinc-incorporated mesoporous calcium-silicate nanoparticles. Int J Nanomed 15:3921–3936. https://doi.org/10.2147/IJN.S244686

    Article  CAS  Google Scholar 

  • Li L, Wang H (2013) Enzyme-coated mesoporous silica nanoparticles as efficient antibacterial agents in vivo. Adv Healthc Mater 2(10):1351–1360. https://doi.org/10.1002/adhm.201300051

    Article  CAS  PubMed  Google Scholar 

  • Liao C, Li Y, Bactericidal TS (2019) Cytotoxic properties of silver nanoparticles. Int J Mol Sci 20(2):449. https://doi.org/10.3390/ijms20020449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liong M, France B, Bradley KA, Zink JI (2009) Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles. Adv Mater 21(17):1684–1689. https://doi.org/10.1002/adma.200802646

    Article  CAS  Google Scholar 

  • Liu X, Shao W, Zheng Y, Yao C, Peng L, Zhang D, Hu XY, Wang L (2017) GSH-responsive supramolecular nanoparticles constructed by β-D-galactose-modified pillar [5] Arene and Camptothecin Prodrug for targeted anticancer drug delivery. Chem Commun 53:8596–8599

    Article  CAS  Google Scholar 

  • Liu Y, Dong T, Chen Y, Sun N, Liu Q, Huang Z, Yang Y, Cheng H, Yue K (2023) Biodegradable and cytocompatible hydrogel coating with antibacterial activity for the prevention of implant-associated infection. ACS Appl Mater Interfaces 15(9):11507–11519

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Dong T, Chen Y, Sun N, Liu Q, Huang Z, ... Yue K (2023) Biodegradable and cytocompatible hydrogel coating with antibacterial activity for the prevention of implant-associated infection. ACS Appl Mater Interfaces 15(9):11507–11519

  • Lu J, Chen Y, Ding M, Fan X, Hu J, Chen Y, Li J, Li Z, Liu W (2022) A 4arm-PEG macromolecule crosslinked chitosan hydrogels as antibacterial wound dressing. Carbohydr Polym 277:118871

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Chen Y, Ding M, Fan X, Hu J, Chen Y, ... Liu W (2022) A 4arm-PEG macromolecule crosslinked chitosan hydrogels as antibacterial wound dressing. Carbohydr Polym 277:118871

  • Manzano M, Vallet-Regí M (2010) New developments in ordered mesoporous materials for drug delivery. J Mater Chem 20:5593–5604. https://doi.org/10.1039/b922651f

    Article  CAS  Google Scholar 

  • Martínez-Carmona M, Gun’ko YK, Vallet-Regí M (2018) Mesoporous silica materials as drug delivery: “the nightmare” of bacterial infection. Pharmaceutics 10:279. https://doi.org/10.3390/pharmaceutics10040279

  • McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S (2012) Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 10:39–50

    Article  CAS  Google Scholar 

  • Mebert AM, Aimé C, Alvarez GS et al (2016) Silica core-shell particles for the dual delivery of gentamicin and rifamycin antibiotics. J Mater Chem B 4(18):3135–3144. https://doi.org/10.1039/c6tb00281a

    Article  CAS  PubMed  Google Scholar 

  • Mekaru H, Lu J, Tamanoi F (2015) Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Adv Drug Deliv Rev 95:40–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirsaeidi SM, Tabarsi P, Khoshnood K, Pooramiri MV, Rowhani-Rahbar A, Mansoori SD, Masjedi H, Zahirifard S, Mohammadi F, Farnia P, Masjedi MR, Velayati AA (2005) Treatment of multiple drug-resistant tuberculosis (MDR-TB) in Iran. Int J Infect Dis 9:317–322

    Article  PubMed  Google Scholar 

  • Mirzajani F, Ghassempour A, Aliahmadi A, Esmaeili MA (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res Microbiol 162(5):542–549. https://doi.org/10.1016/j.resmic.2011.04.009

    Article  CAS  PubMed  Google Scholar 

  • Montalvo-Quirós S, Gómez-Graña S, Vallet-Regí M, Prados- Rosales RC, González B, Luque-Garcia JL (2021) Mesoporous silica nanoparticles containing silver as novel antimycobacterial agents against Mycobacterium tuberculosis. Colloids Surf B Biointerfaces 197:111405. https://doi.org/10.1016/j.colsurfb.2020.111405

    Article  CAS  PubMed  Google Scholar 

  • Moser M, Nirmalananthan N, Behnke T, Geißler D, ReschGenger U (2018) Multimodal cleavable reporters versus conventional labels for optical quantification of accessible amino and carboxy groups on nano- and microparticles. Anal Chem 90:5887–5895

    Article  CAS  PubMed  Google Scholar 

  • Mudakavi RJ, Raichur AM, Chakravortty D (2014) Lipid coated mesoporous silica nanoparticles as an oral delivery system for targeting and treatment of intravacuolar Salmonella infections. RSC Adv 4(105):61160–61166. https://doi.org/10.1039/c4ra12973c

    Article  CAS  Google Scholar 

  • Nadell CD, Drescher K, Foster KR (2016) Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol 14:589–600

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TK, Duong HT, Selvanayagam R, Boyer C, Barraud N (2015) Iron oxide nanoparticle-mediated hyperthermia stimulates dispersal in bacterial biofilms and enhances antibiotic efficacy. Sci Rep 5:18385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan QS, Chen TT, Nie CP, Yi JT, Liu C, Hu YL, Chu X (2018) In situ synthesis of ultrathin ZIF-8 film-coated MSNs for codelivering Bcl2 SiRNA and doxorubicin to enhance chemotherapeutic efficacy in drug-resistant cancer cells. ACS Appl Mater Interfaces 10:33070–33077

    Article  CAS  PubMed  Google Scholar 

  • Parham S, Wicaksono DHB, Bagherbaigi S, Lee SL, Nur H (2016) Antimicrobial treatment of different metal oxide nanoparticles: a critical review. J Chinese Chem Soc 63(4):385–393. https://doi.org/10.1002/jccs.201500446

    Article  CAS  Google Scholar 

  • Park J, Kim J, Singha K, Han DK, Park H, Kim WJ (2013) Nitric oxide integrated polyethylenimine-based tri-block copolymer for efficient antibacterial activity. Biomaterials 34:8766–8775

    Article  CAS  PubMed  Google Scholar 

  • Pedraza D, Díez J, Barba II, Colilla M, Vallet-Regi M (2018) Amine- functionalized mesoporous silica nanoparticles: a new nanoantibiotic for bone infection treatment. Biomed Glas 4(1):1–12. https://doi.org/10.1515/bglass-2018-0001

    Article  Google Scholar 

  • Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P, Ye Y, ... Bradbury MS (2014) Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med 6(260):260ra149–260ra149

  • Pugazhendhi A, Prabakar D, Jacob JM, Karuppusamy I, Saratale RG (2018) Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb Pathog 114:41–45. https://doi.org/10.1016/j.micpath.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  • Pun SH, Bellocq NC, Liu A, Jensen G, Machemer T, Quijano E, Schluep T, Wen S, Engler H, Heidel J, Davis ME (2004) Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug Chem 15:831–840

    Article  CAS  PubMed  Google Scholar 

  • Quan K, Zhang Z, Chen H, Ren X, Ren Y, Peterson BW, van der Mei HC, Busscher HJ (2019) Artificial channels in an infectious biofilm created by magnetic nanoparticles enhanced bacterial killing by antibiotics. Small 15:1902313

    Article  Google Scholar 

  • Ramon-García S, Ng C, Anderson H, Chao JD, Zheng X, Pfeifer T, Av-Gay Y, Roberge M, Thompson CJ (2011) Synergistic drug combinations for tuberculosis therapy identified by a novel high throughput screen. Antimicrob Agents Chemother 55:3861–3869

  • Ray S, Cheng CA, Chen W, Li Z, Zink JI, Lin YY (2019) Magnetic heating stimulated cargo release with dose control using multifunctional MR and thermosensitive liposome. Nanotheranostics 3:166–178

    Article  PubMed  PubMed Central  Google Scholar 

  • Roemer T, Boone C (2013) Systems-level antimicrobial drug and drug synergy discovery. Nat Chem Biol 9:222–231

    Article  CAS  PubMed  Google Scholar 

  • Salomoni R, Léo P, Montemor A, Rinaldi B, Rodrigues M (2017) Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol Sci Appl 10:115–121. https://doi.org/10.2147/NSA.S133415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Salcedo S, Vallet-Regí M, Shahin SA, Glackin CA, Zink JI (2018) Mesoporous core-shell silica nanoparticles with anti-fouling properties for ovarian cancer therapy. Chem Eng J 340:114–124. https://doi.org/10.1016/j.cej.2017.12.116

    Article  CAS  Google Scholar 

  • Saqib S, Munis MFH, Zaman W et al (2019) Synthesis, characterization and use of iron oxide nano particles for antibacterial activity. Microsc Res Tech 82(4):415–420. https://doi.org/10.1002/jemt.23182

    Article  CAS  PubMed  Google Scholar 

  • Saravanakumar G, Kim J, Kim WJ (2017) Reactive-oxygen-species responsive drug delivery systems: promises and challenges. Adv Sci 4:1600124

    Article  Google Scholar 

  • Selvarajan V, Obuobi S, Ee PLR (2020) Silica nanoparticles-a versatile tool for the treatment of bacterial infections. Front Chem 8:602. https://doi.org/10.3389/fchem.2020.00602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Kim HC, Su H, Wang F, Wolfram J, Kirui D, Mai J, Mu C, Ji L, Mao Z, Shen H (2014) Cyclodextrin and polyethylenimine functionalized mesoporous silica nanoparticles for delivery of siRNA cancer therapeutics. Theranostics 4:487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AW (2005) Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems? Adv Drug Deliv Rev 57:1539–1550

    Article  CAS  PubMed  Google Scholar 

  • Song H, Ahmad Nor Y, Yu M et al (2016) Silica nanopollens enhance adhesion for long-term bacterial inhibition. J Am Chem Soc 138(20):6455–6462. https://doi.org/10.1021/jacs.6b00243

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Cai L, Tian Z, Wu Y (2020) Phytochemical Curcumin- Coformulated CJ. Silver-decorated melanin-like polydopamine/ mesoporous silica composites with improved antibacterial and chemotherapeutic effects against drug-resistant cancer cells. ACS Omega 5(25):15083–15094. https://doi.org/10.1021/acsomega.0c00912

  • Stacy A, McNally L, Darch SE, Brown SP, Whiteley M (2016) The biogeography of polymicrobial infection. Nat Rev Microbiol 14:93–105

    Article  CAS  PubMed  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  CAS  PubMed  Google Scholar 

  • Subbiahdoss G, Sharifi S, Grijpma DW, Laurent S, van der Mei HC, Mahmoudi M, Busscher HJ (2012) Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant Staphylococci. Acta Biomater 8:2047–2055

    Article  CAS  PubMed  Google Scholar 

  • Tasia W, Lei C, Cao Y, Ye Q, He Y, Xu C (2020) Enhanced eradication of bacterial biofilms with DNase I-loaded silver-doped mesoporous silica nanoparticles. Nanoscale 12(4):2328–2332. https://doi.org/10.1039/c9nr08467c

    Article  CAS  PubMed  Google Scholar 

  • Taylor EN, Kummer KM, Durmus NG, Leuba K, Tarquinio KM, Webster TJ (2012) Superparamagnetic iron oxide nanoparticles (SPION) for the treatment of antibiotic-resistant biofilms. Small 8:3016–3027

    Article  CAS  PubMed  Google Scholar 

  • Tenland E, Pochert A, Krishnan N et al (2019) Effective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles. PLoS ONE 14(2):1–16. https://doi.org/10.1371/journal.pone.0212858

    Article  CAS  Google Scholar 

  • Thomas CR, Ferris DP, Lee JH, Choi E, Cho MH, Kim ES, Stoddart JF, Shin J-S, Cheon J, Zink JI (2010) Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. J Am Chem Soc 132:10623–10625

    Article  CAS  PubMed  Google Scholar 

  • Thurlow LR, Hanke ML, Fritz T, Angle A, Aldrich A, Williams SH, Engebretsen IL, Bayles KW, Horswill AR, Kielian T (2011) Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol 186:6585–6596

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Qi J, Zhang W, Cai Q, Jiang X (2014) Facile, one-pot synthesis, and antibacterial activity of mesoporous silica nanoparticles decorated with well-dispersed silver nanoparticles. ACS Appl Mater Interfaces 6(15):12038–12045. https://doi.org/10.1021/am5026424

    Article  CAS  PubMed  Google Scholar 

  • Torella JP, Chait R, Kishony R (2010) Optimal drug synergy in antimicrobial treatments. PLoS Comput Biol 6:e1000796

  • Trewyn BG, Whitman CM, Lin VSY (2004) Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents. Nano Lett 4(11):2139–2143. https://doi.org/10.1021/nl048774r

    Article  CAS  Google Scholar 

  • Vallet-Regí M, Rámila A, del Real RP, Pérez-Pariente J (2001) A new property of MCM-41: drug delivery system. Chem Mater 13:308–311. https://doi.org/10.1021/cm0011559

    Article  CAS  Google Scholar 

  • Vallet-Regí M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed 46:7548–7558. https://doi.org/10.1002/anie.200604488

    Article  CAS  Google Scholar 

  • Vallet-Regí M, Colilla M, González B (2011) Medical applications of organic–inorganic hybrid materials within the field of silica-based bioceramics. Chem Soc Rev 40:596–607. https://doi.org/10.1039/C0CS00025F

    Article  PubMed  Google Scholar 

  • Vallet-Regí M, Izquierdo-Barba I, Colilla M (2012) Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery. Philos Trans A Math Phys Eng Sci 370:1400–1421. https://doi.org/10.1098/rsta.2011.0258

  • Vallet-Regí M, González B, Izquierdo-Barba I (2019) Nanomaterials as promising alternative in the infection treatment. Int J Mol Sci 20. https://doi.org/10.3390/ijms20153806

  • van Gennip M, Christensen LD, Alhede M, Qvortrup K, Jensen PØ, Høiby N, Givskov M, Bjarnsholt T (2012) Interactions between polymorphonuclear leukocytes and pseudomonas aeruginosa biofilms on silicone implants in vivo. Infect Immun 80:2601–2607

    Article  PubMed  PubMed Central  Google Scholar 

  • Velikova N, Mas N, Miguel-Romero L et al (2017) Broadening the antibacterial spectrum of histidine kinase autophosphorylation inhibitors via the use of ε-poly-L-lysine capped mesoporous silica-based nanoparticles. Nanomed Nanotechnol Biol Med 13(2):569–581. https://doi.org/10.1016/j.nano.2016.09.011

    Article  CAS  Google Scholar 

  • Wan X, Zhuang L, She B, Deng Y, Chen D, Tang J (2016) In-situ reduction of monodisperse nanosilver on hierarchical wrinkled mesoporous silica with radial pore channels and its antibacterial performance. Mater Sci Eng C 65:323–330. https://doi.org/10.1016/j.msec.2016.04.058

    Article  CAS  Google Scholar 

  • Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, Che E, Hu L, Zhang Q, Jiang T, Wang S (2015) Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine 11:313–327

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ding X, Chen Y et al (2016) Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections. Biomaterials 101:207–216. https://doi.org/10.1016/j.biomaterials.2016.06.004

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Nor YA, Song H et al (2016) Small-sized and large-pore dendritic mesoporous silica nanoparticles enhance antimicrobial enzyme delivery. J Mater Chem B 4(15):2646–2653. https://doi.org/10.1039/C6TB00053C

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Shi L, Zhang J, Cheng J, Wang X (2017) Self-assembly fabrication, microstructures and antibacterial performance of layer-structured montmorillonite nanocomposites with cationic silica nanoparticles. RSC Adv 7(50):31502–31511. https://doi.org/10.1039/c7ra04353h

    Article  CAS  Google Scholar 

  • Wang X, Wu J, Li P, Wang L, Zhou J, Zhang G, Li X, Hu B, Xing X (2018) Microenvironment-responsive magnetic nanocomposites based on silver nanoparticles/gentamicin for enhanced biofilm disruption by magnetic field. ACS Appl Mater Interfaces 10:34905–34915

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Liu X, Chen S, Liu Z, Zhang X, Liang XJ, Li L (2019) Regulation of Ca2+ signaling for drug-resistant breast cancer therapy with mesoporous silica nanocapsule encapsulated doxorubicin/siRNA cocktail. ACS Nano 13:274–283

    Article  CAS  PubMed  Google Scholar 

  • Wen J, Yang K, Liu F, Li H, Xu Y, Sun S (2017) Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem Soc Rev 46:6024–6045

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Jin H, Wang C, Zhang Z, Ruan H, Sun L, Yang C, Li Y, Qin W, Wang C (2017) Synergistic cisplatin/doxorubicin combination chemotherapy for multidrug-resistant cancer via polymeric nanogels targeting delivery. ACS Appl Mater Interfaces 9:9426–9436

    Article  CAS  PubMed  Google Scholar 

  • Xia J, Li Y, He C, Yong C, Wang L, Fu H, He XL, Wang ZY, Liu DF, Zhang YY (2023) Synthesis and biological activities of oxazolidinone pleuromutilin derivatives as a potent anti-MRSA agent. ACS Infect Dis 9(9):1711–1729

    Article  CAS  PubMed  Google Scholar 

  • Xia J, Li Y, He C, Yong C, Wang L, Fu H, ... Zhang YY (2023) Synthesis and biological activities of oxazolidinone pleuromutilin derivatives as a potent anti-MRSA agent. ACS Infect Dis 9(9):1711–1729

  • Xu C, He Y, Li Z, Ahmad Nor Y, Ye Q (2018) Nanoengineered hollow mesoporous silica nanoparticles for the delivery of antimicrobial proteins into biofilms. J Mater Chem B 6(13):1899–1902. https://doi.org/10.1039/C7TB03201C

    Article  CAS  PubMed  Google Scholar 

  • Xu JW, Yao K, Xu ZK (2019) Nanomaterials with a photothermal effect for antibacterial activities: an overview. Nanoscale 11(18):8680–8691. https://doi.org/10.1039/c9nr01833f

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Jia X, Zhang YM, Li N, Liu Y (2018) Supramolecular nanoparticles based on β-CD modified hyaluronic acid for DNA encapsulation and controlled release. Chem Commun 54:8713–8716

    Article  CAS  Google Scholar 

  • Yang S, Han X, Yang Y et al (2018) Bacteria-targeting nanoparticles with microenvironment-responsive antibiotic release to eliminate intracellular staphylococcus aureus and associated infection. ACS Appl Mater Interfaces 10(17):14299–14311. https://doi.org/10.1021/acsami.7b15678

    Article  CAS  PubMed  Google Scholar 

  • Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH (2020) The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomed 15:2555–2562. https://doi.org/10.2147/IJN.S246764

    Article  CAS  Google Scholar 

  • Yu Q, Deng T, Lin FC, Zhang B, Zink JI (2020) Supramolecular assemblies of heterogeneous mesoporous silica nanoparticles to co-deliver antimicrobial peptides and antibiotics for synergistic eradication of pathogenic biofilms. ACS Nano 14(5):5926–5937. https://doi.org/10.1021/acsnano.0c01336

    Article  CAS  PubMed  Google Scholar 

  • Yu P, Wang Z, Marcos-Hernandez M, Zuo P, Zhang D, Powell C, Pan AY, Villagran D, Wong MS, Alvarez PJ (2019) BottomUp biofilm eradication using bacteriophage-loaded magnetic nanocomposites: a computational and experimental study. Environ Sci Nano 6:3539−3550

  • Zhang C, Du C, Liao JY, Gu Y, Gong Y, Pei J, Gu H, Yin D, Gao L, Pan Y (2019) Synthesis of magnetite hybrid nanocomplexes to eliminate bacteria and enhance biofilm disruption. Biomater Sci 7:2833–2840

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally. The authors confirm that no paper mill and artificial intelligence was used.

Corresponding author

Correspondence to Dibyajit Lahiri.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

All authors have their consent to participate.

Consent for publication

All authors have their consent to publish their work.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sil, M., Mukherjee, D., Goswami, A. et al. Antibiofilm activity of mesoporous silica nanoparticles against the biofilm associated infections. Naunyn-Schmiedeberg's Arch Pharmacol 397, 3617–3633 (2024). https://doi.org/10.1007/s00210-023-02872-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02872-0

Keywords

Navigation