Skip to main content

Advertisement

Log in

Highly synergistic activity of melittin with imipenem and colistin in biofilm inhibition against multidrug-resistant strong biofilm producer strains of Acinetobacter baumannii

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The rapid increase of drug resistance and failure of available antibiotics to treat biofilm-associated infections is of great health concern. Accordingly, our study aimed to evaluate the synergistic antibacterial, biofilm inhibitory, and biofilm removal activities of melittin in combination with colistin, imipenem, and ciprofloxacin against multidrug-resistant (MDR) strong biofilm producer Acinetobacter baumannii isolates. The kinetics of biofilm formation were evaluated for the isolates for 144 h. Minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), minimum biofilm inhibitory concentrations (MBICs), and biofilm removal activities for melittin and combinations with antibiotics were determined. Inhibition of biofilm-associated protein (bap) expression by melittin was evaluated with real-time polymerase chain reaction (PCR). Field emission scanning electron microscopy (FE-SEM) was used to visualize the effect of synergism on the inhibition of biofilm production. The geometric means of the fractional inhibitory concentration index (FICi) for melittin–colistin, melittin–imipenem, and melittin–ciprofloxacin combinations were calculated as 0.31, 0.24, and 0.94, respectively. Comparing the geometric means of the removal activity for melittin, colistin, imipenem, and combinations of them in both 6 and 24 h showed a significant difference between the groups (p-value < 0.05). Exposure to melittin induced a statistically significant downregulation of bap mRNA levels in all isolates at sub-MIC doses. Analysis of the FE-SEM results demonstrated that the synergism of melittin–colistin at 0.125–0.25 μg inhibited biofilm formation completely. In conclusion, our findings indicate that melittin possesses considerable potential for use in combination with colistin and imipenem to treat infections caused by MDR strong biofilm producer A. baumannii isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AMP:

Antimicrobial peptides

MDR:

Multidrug-resistant

bap:

Biofilm-associated protein

CFU:

Colony-forming units

Col:

Colistin

Cip:

Ciprofloxacin

FE-SEM:

Field emission scanning electron microscopy

FICi:

Fractional inhibitory concentration index

Imp:

Imipenem

IBB:

Interbacterial biofilm

MHB:

Mueller-Hinton broth

MIC:

Minimum inhibitory concentration

MBC:

Minimum bactericidal concentration

Mel:

Melittin

MBIC:

Minimum biofilm inhibitory concentration

SBBs:

Small biofilm biomasses

TSB:

Tryptic soy broth

References

  1. Qi L, Li H, Zhang C, Liang B, Li J, Wang L, Du X, Liu X, Qiu S, Song H (2016) Relationship between antibiotic resistance, biofilm formation, and biofilm-specific resistance in Acinetobacter baumannii. Front Microbiol 7:483

    PubMed  PubMed Central  Google Scholar 

  2. Lashinsky JN, Henig O, Pogue JM, Kaye KS (2017) Minocycline for the treatment of multidrug and extensively drug-resistant A. baumannii: a review. Infect Dis Ther 6(2):199–211

    Article  PubMed  PubMed Central  Google Scholar 

  3. Safari M, Mozaffari Nejad AS, Bahador A, Jafari R, Alikhani MY (2015) Prevalence of ESBL and MBL encoding genes in Acinetobacter baumannii strains isolated from patients of intensive care units (ICU). Saudi J Biol Sci 22(4):424–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bardbari AM, Arabestani MR, Karami M, Keramat F, Alikhani MY, Bagheri KP (2017) Correlation between ability of biofilm formation with their responsible genes and MDR patterns in clinical and environmental Acinetobacter baumannii isolates. Microb Pathog 108:122–128

    Article  CAS  PubMed  Google Scholar 

  5. Howard A, O’Donoghue M, Feeney A, Sleator RD (2012) Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence 3(3):243–250

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vila-Farres X, Garcia de la Maria C, López-Rojas R, Pachón J, Giralt E, Vila J (2012) In vitro activity of several antimicrobial peptides against colistin-susceptible and colistin-resistant Acinetobacter baumannii. Clin Microbiol Infect 18(4):383–387

    Article  CAS  PubMed  Google Scholar 

  7. Guaní-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Terán LM (2010) Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin Immunol 135(1):1–11

    Article  PubMed  Google Scholar 

  8. Leonard BC, Affolter VK, Bevins CL (2012) Antimicrobial peptides: agents of border protection for companion animals. Vet Dermatol 23(3):177-e36

    Article  PubMed  PubMed Central  Google Scholar 

  9. Felício MR, Silva ON, Gonçalves S, Santos NC, Franco OL (2017) Peptides with dual antimicrobial and anticancer activities. Front Chem 5:5

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dosler S, Karaaslan E, Alev Gerceker A (2016) Antibacterial and anti-biofilm activities of melittin and colistin, alone and in combination with antibiotics against Gram-negative bacteria. J Chemother 28(2):95–103

    Article  CAS  PubMed  Google Scholar 

  11. Dahdouh E, Orgaz B, Gómez-Gil R, Mingorance J, Daoud Z, Suarez M, San Jose C (2016) Patterns of biofilm structure and formation kinetics among Acinetobacter baumannii clinical isolates with different antibiotic resistance profiles. MedChemCommun 7(1):157–163

    Article  CAS  Google Scholar 

  12. Dosler S, Karaaslan E (2014) Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides 62:32–37

    Article  CAS  PubMed  Google Scholar 

  13. Guilhelmelli F, Vilela N, Albuquerque P, Derengowski LdaS, Silva-Pereira I, Kyaw C (2013) Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol 4:353

    Article  PubMed  PubMed Central  Google Scholar 

  14. Reffuveille F, de la Fuente-Núñez C, Mansour S, Hancock RE (2014) A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrob Agents Chemother 58(9):5363–5371

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gopal R, Kim YG, Lee JH, Lee SK, Chae JD, Son BK, Seo CH, Park Y (2014) Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant Acinetobacter baumannii strains. Antimicrob Agents Chemother 58(3):1622–1629

    Article  PubMed  PubMed Central  Google Scholar 

  16. Giacometti A, Cirioni O, Kamysz W, D’Amato G, Silvestri C, Del Prete MS, Łukasiak J, Scalise G (2003) Comparative activities of cecropin A, melittin, and cecropin A-melittin peptide CA(1-7)M(2-9)NH2 against multidrug-resistant nosocomial isolates of Acinetobacter baumannii. Peptides 24(9):1315–1318

    Article  CAS  PubMed  Google Scholar 

  17. Choi JH, Jang AY, Lin S, Lim S, Kim D, Park K, Han SM, Yeo JH, Seo HS (2015) Melittin, a honeybee venom-derived antimicrobial peptide, may target methicillin-resistant Staphylococcus aureus. Mol Med Rep 12(5):6483–6490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Picoli T, Peter CM, Zani JL, Waller SB, Lopes MG, Boesche KN, Vargas GDÁ, Hübner SO, Fischer G (2017) Melittin and its potential in the destruction and inhibition of the biofilm formation by Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa isolated from bovine milk. Microb Pathog 112:57–62

    Article  CAS  PubMed  Google Scholar 

  19. Clinical and Laboratory Standards Institute (CLSI) (2015) Performance standards for antimicrobial susceptibility testing; Twenty-fifth informational supplement. CLSI document M100-S25. CLSI, Wayne, PA

  20. Eales M (2015) The visualisation of interactions between Acinetobacter baumannii and the antimicrobial peptides: colistin sulphate, bicarinalin and BP100. MRes thesis, University of Lincoln

  21. Stiefel P, Mauerhofer S, Schneider J, Maniura-Weber K, Rosenberg U, Ren Q (2016) Enzymes enhance biofilm removal efficiency of cleaners. Antimicrob Agents Chemother 60(6):3647–3652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brossard KA, Campagnari AA (2012) The Acinetobacter baumannii biofilm-associated protein plays a role in adherence to human epithelial cells. Infect Immun 80(1):228–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sheikhalizadeh V, Hasani A, Ahangarzadeh Rezaee M, Rahmati-Yamchi M, Hasani A, Ghotaslou R, Goli HR (2017) Comprehensive study to investigate the role of various aminoglycoside resistance mechanisms in clinical isolates of Acinetobacter baumannii. J Infect Chemother 23(2):74–79

    Article  CAS  PubMed  Google Scholar 

  24. El-Azizi M, Farag N, Khardori N (2015) Antifungal activity of amphotericin B and voriconazole against the biofilms and biofilm-dispersed cells of Candida albicans employing a newly developed in vitro pharmacokinetic model. Ann Clin Microbiol Antimicrob 14(1):21

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang C, Wang J, Pan H, Hu W, Li Y (2015) Multidrug resistance and biofilm formation contribute to the nosocomial infections caused by Acinetobacter baumannii. In: Méndez-Vilas A (ed) The battle against microbial pathogens: basic science, technological advances and educational programs, vol 1. Formatex Research Center, Badajoz, Spain, pp 452–461

    Google Scholar 

  26. Feng Q, Huang Y, Chen M, Li G, Chen Y (2015) Functional synergy of alpha-helical antimicrobial peptides and traditional antibiotics against Gram-negative and Gram-positive bacteria in vitro and in vivo. Eur J Clin Microbiol Infect Dis 34(1):197–204

    Article  CAS  PubMed  Google Scholar 

  27. Fjell CD, Hiss JA, Hancock RE, Schneider G (2011) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11(1):37–51

    Article  PubMed  Google Scholar 

  28. Ying C, Li Y, Wang Y, Zheng B, Yang C (2015) Investigation of the molecular epidemiology of Acinetobacter baumannii isolated from patients and environmental contamination. J Antibiot (Tokyo) 68(9):562–567

    Article  CAS  Google Scholar 

  29. Tan TY, Ng LS, Tan E, Huang G (2007) In vitro effect of minocycline and colistin combinations on imipenem-resistant Acinetobacter baumannii clinical isolates. J Antimicrob Chemother 60(2):421–423

    Article  CAS  PubMed  Google Scholar 

  30. Djeribi R, Bouchloukh W, Jouenne T, Menaa B (2012) Characterization of bacterial biofilms formed on urinary catheters. Am J Infect Control 40(9):854–859

    Article  PubMed  Google Scholar 

  31. M’hamedi I, Hassaine H, Bellifa S, Lachachi M, Terki IK, Djeribi R (2014) Biofilm formation by Acinetobacter baumannii isolated from medical devices at the intensive care unit of the University Hospital of Tlemcen (Algeria). Afr J Microbiol Res 8(3):270–276

    Article  Google Scholar 

  32. Wroblewska MM, Sawicka-Grzelak A, Marchel H, Luczak M, Sivan A (2008) Biofilm production by clinical strains of Acinetobacter baumannii isolated from patients hospitalized in two tertiary care hospitals. FEMS Immunol Med Microbiol 53(1):140–144

    Article  CAS  PubMed  Google Scholar 

  33. McQueary CN, Actis LA (2011) Acinetobacter baumannii biofilms: variations among strains and correlations with other cell properties. J Microbiol 49(2):243–250

    Article  CAS  PubMed  Google Scholar 

  34. Feng X, Sambanthamoorthy K, Palys T, Paranavitana C (2013) The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii. Peptides 49:131–137

    Article  CAS  PubMed  Google Scholar 

  35. Abbott I, Cerqueira GM, Bhuiyan S, Peleg AY (2013) Carbapenem resistance in Acinetobacter baumannii: laboratory challenges, mechanistic insights and therapeutic strategies. Expert Rev Anti Infect Ther 11(4):395–409

    Article  CAS  PubMed  Google Scholar 

  36. Pompilio A, Scocchi M, Pomponio S, Guida F, Di Primio A, Fiscarelli E, Gennaro R, Di Bonaventura G (2011) Antibacterial and anti-biofilm effects of cathelicidin peptides against pathogens isolated from cystic fibrosis patients. Peptides 32(9):1807–1814

    Article  CAS  PubMed  Google Scholar 

  37. Perez F, El Chakhtoura NG, Papp-Wallace KM, Wilson BM, Bonomo RA (2016) Treatment options for infections caused by carbapenem-resistant Enterobacteriaceae: can we apply “precision medicine” to antimicrobial chemotherapy? Expert Opin Pharmacother 17(6):761–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gajski G, Domijan A-M, Žegura B, Štern A, Gerić M, Jovanović IN, Vrhovac I, Madunić J, Breljak D, Filipič M (2016) Melittin induced cytogenetic damage, oxidative stress and changes in gene expression in human peripheral blood lymphocytes. Toxicon 110:56–67

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This investigation is a part of the Ph.D. thesis approved and financially supported by the Vice-Chancellor of Research and Technology of Hamadan University of Medical Sciences, Hamadan, Iran and technically supported by Pasteur Institute of Iran, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

A.M.B. performed all experiments and analysis and also contributed to writing the manuscript. M.R.A., M.K., and F.K. served as advisors. H.A. contributed to the FE-SEM experiments. M.Y.A. contributed as a supervisor and also revision of the manuscript. K.P.B. suggested the implementation of melittin, contributed as a supervisor, and also in the writing, revision, and redaction of the manuscript.

Corresponding authors

Correspondence to Mohammad Yousef Alikhani or Kamran Pooshang Bagheri.

Ethics declarations

Conflict of interest

None of the authors have any conflicts of interest related to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardbari, A.M., Arabestani, M.R., Karami, M. et al. Highly synergistic activity of melittin with imipenem and colistin in biofilm inhibition against multidrug-resistant strong biofilm producer strains of Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis 37, 443–454 (2018). https://doi.org/10.1007/s10096-018-3189-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-018-3189-7

Keywords

Navigation