Skip to main content

Advertisement

Log in

Mood and behavior regulation: interaction of lithium and dopaminergic system

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Lithium is one of the most effect mood-stabilizing drugs prescribed especially for bipolar disorder. Lithium has wide range effects on different molecular factors and neural transmission including dopaminergic signaling. On the other hand, mesolimbic and mesocortical dopaminergic signaling is significantly involved in the pathophysiology of neuropsychiatric disorders. This review article aims to study lithium therapeutic mechanisms, dopaminergic signaling, and the interaction of lithium and dopamine. We concluded that acute and chronic lithium treatments often reduce dopamine synthesis and level in the brain. However, some studies have reported conflicting results following lithium treatment, especially chronic treatment. The dosage, duration, and type of lithium administration, and the brain region selected for measuring dopamine level were not significant differences in different chronic treatments used in previous studies. It was suggested that lithium has various mechanisms affecting dopaminergic signaling and mood, and that many molecular factors can be involved, including brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), β-catenin, protein kinase B (Akt), and glycogen synthase kinase-3 beta (GSK-3β). Thus, molecular effects of lithium can be the most important mechanisms of lithium that also alter neural transmissions including dopaminergic signaling in mesolimbic and mesocortical pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adli M, Hollinde DL, Stamm T, Wiethoff K, Tsahuridu M, Kirchheiner J, Heinz A, Bauer M (2007) Response to lithium augmentation in depression is associated with the glycogen synthase kinase 3-beta -50T/C single nucleotide polymorphism. Biol Psychiatry 62:1295–1302

    Article  CAS  PubMed  Google Scholar 

  • Andersen SL, Teicher MH (2009) Desperately driven and no brakes: developmental stress exposure and subsequent risk for substance abuse. Neurosci Biobehav Rev 33:516–524

    Article  PubMed  Google Scholar 

  • Andersen SL, Thompson AT, Rutstein M, Hostetter JC, Teicher MH (2000) Dopamine receptor pruning in prefrontal cortex during the periadolescent period in rats. Synapse 37:167–169

    Article  CAS  PubMed  Google Scholar 

  • Andretic R, van Swinderen B, Greenspan RJ (2005) Dopaminergic modulation of arousal in Drosophila. Curr Biol 15:1165–1175

    Article  CAS  PubMed  Google Scholar 

  • Aperia AC (2000) Intrarenal dopamine: a key signal in the interactive regulation of sodium metabolism. Annu Rev Physiol 62:621–647

    Article  CAS  PubMed  Google Scholar 

  • Arey RN, Enwright JF 3rd, Spencer SM, Falcon E, Ozburn AR, Ghose S, Tamminga C, McClung CA (2014) An important role for cholecystokinin, a CLOCK target gene, in the development and treatment of manic-like behaviors. Mol Psychiatry 19:342–350

    Article  CAS  PubMed  Google Scholar 

  • Asghar SJ, Tanay VA, Baker GB, Greenshaw A, Silverstone PH (2003) Relationship of plasma amphetamine levels to physiological, subjective, cognitive and biochemical measures in healthy volunteers. Hum Psychopharmacol Clin Exp 18:291–299

    Article  CAS  Google Scholar 

  • Ashok AH, Marques TR, Jauhar S, Nour MM, Goodwin GM, Young AH, Howes OD (2017) The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment. Mol Psychiatry 22:666–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aylmer CG, Steinberg H, Webster RA (1987) Hyperactivity induced by dexamphetamine/chlordiazepoxide mixtures in rats and its attenuation by lithium pretreatment: a role for dopamine? Psychopharmacology 91:198–206

    Article  CAS  PubMed  Google Scholar 

  • Baik JH (2013) Dopamine signaling in reward-related behaviors. Front Neural Circuits 7:152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldessarini RJ, Tondo L, Davis P, Pompili M, Goodwin FK, Hennen J (2006) Decreased risk of suicides and attempts during long-term lithium treatment: a meta-analytic review. Bipolar Disord 8:625–639

    Article  CAS  PubMed  Google Scholar 

  • Banerji TK (1982) Lithium: effects of short-term and chronic treatments in rats on the activity of dopamine-beta-hydroxylase (DBH) in the central versus peripheral nervous system. Brain Res 253:344–348

    Article  CAS  PubMed  Google Scholar 

  • Baptista T, Teneud L, Contreras Q, Burguera JL, Burguera M, Hernandez L (1993) Effects of acute and chronic lithium treatment on amphetamine-induced dopamine increase in the nucleus accumbens and prefrontal cortex in rats as studied by microdialysis. J Neural Transm Gen Sect 94:75–89

    Article  CAS  PubMed  Google Scholar 

  • Barroilhet SA, Ghaemi SN (2020) When and how to use lithium. Acta Psychiatr Scand 142:161–172

    Article  CAS  PubMed  Google Scholar 

  • Basar K, Sesia T, Groenewegen H, Steinbusch HW, Visser-Vandewalle V, Temel Y (2010) Nucleus accumbens and impulsivity. Prog Neurobiol 92:533–557

    Article  PubMed  Google Scholar 

  • Basselin M, Chang L, Bell JM, Rapoport SI (2005) Chronic lithium chloride administration to unanesthetized rats attenuates brain dopamine D2-like receptor-initiated signaling via arachidonic acid. Neuropsychopharmacology 30:1064–1075

    Article  CAS  PubMed  Google Scholar 

  • Basselin M, Chang L, Rapoport SI (2006) Chronic lithium chloride administration to rats elevates glucose metabolism in wide areas of brain, while potentiating negative effects on metabolism of dopamine D2-like receptor stimulation. Psychopharmacology 187:303–311

    Article  CAS  PubMed  Google Scholar 

  • Bastos JR, Perico KM, Marciano Vieira EL, Teixeira AL, Machado FS, de Miranda AS, Moreira FA (2018) Inhibition of the dopamine transporter as an animal model of bipolar disorder mania: locomotor response, neuroimmunological profile and pharmacological modulation. J Psychiatr Res 102:142–149

    Article  PubMed  Google Scholar 

  • Basu S, Dasgupta PS (2000) Dopamine, a neurotransmitter, influences the immune system. J Neuroimmunol 102:113–124

    Article  CAS  PubMed  Google Scholar 

  • Bauer M, Adli M, Baethge C, Berghofer A, Sasse J, Heinz A, Bschor T (2003) Lithium augmentation therapy in refractory depression: clinical evidence and neurobiological mechanisms. Can J Psychiatry 48:440–448

    Article  PubMed  Google Scholar 

  • Beaulieu JM, Caron MG (2008) Looking at lithium: molecular moods and complex behaviour. Mol Interv 8:230–241

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu JM, Sotnikova TD, Yao WD, Kockeritz L, Woodgett JR, Gainetdinov RR, Caron MG (2004) Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci U S A 101:5099–5104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaulieu JM, Marion S, Rodriguiz RM, Medvedev IO, Sotnikova TD, Ghisi V, Wetsel WC, Lefkowitz RJ, Gainetdinov RR, Caron MG (2008) A beta-arrestin 2 signaling complex mediates lithium action on behavior. Cell 132:125–136

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu JM, Espinoza S, Gainetdinov RR (2015) Dopamine receptors - IUPHAR Review 13. Br J Pharmacol 172:1–23

    Article  CAS  PubMed  Google Scholar 

  • Benedetti F, Serretti A, Pontiggia A, Bernasconi A, Lorenzi C, Colombo C, Smeraldi E (2005) Long-term response to lithium salts in bipolar illness is influenced by the glycogen synthase kinase 3-beta -50 T/C SNP. Neurosci Lett 376:51–55

    Article  CAS  PubMed  Google Scholar 

  • Berggren U (1985a) The effect of acute lithium administration on brain monoamine synthesis and the precursor amino acids tyrosine and tryptophan in brain and plasma in rats. J Neural Transm 61:175–181

    Article  CAS  PubMed  Google Scholar 

  • Berggren U (1985b) Effects of chronic lithium treatment on brain monoamine metabolism and amphetamine-induced locomotor stimulation in rats. J Neural Transm 64:239–250

    Article  CAS  PubMed  Google Scholar 

  • Berggren U, Tallstedt L, Ahlenius S, Engel J (1978) The effect of lithium on amphetamine-induced locomotor stimulation. Psychopharmacology 59:41–45

    Article  CAS  PubMed  Google Scholar 

  • Berggren U, Ahlenius S, Engel J (1980) Effects of acute lithium administration on conditioned avoidance behavior and monoamine synthesis in rats. J Neural Transm 47:1–10

    Article  CAS  PubMed  Google Scholar 

  • Berghofer A, Alda M, Adli M, Baethge C, Bauer M, Bschor T, Glenn T, Grof P, Muller-Oerlinghausen B, Rybakowski J (2008) Long-term effectiveness of lithium in bipolar disorder: a multicenter investigation of patients with typical and atypical features. J Clin Psychiatry 69:1860

    Article  PubMed  Google Scholar 

  • Berk M (2009) Neuroprogression: pathways to progressive brain changes in bipolar disorder. Int J Neuropsychopharmacol 12:441–445

    Article  CAS  PubMed  Google Scholar 

  • Berk M, Dodd S, Kauer-Sant'anna M, Malhi GS, Bourin M, Kapczinski F, Norman T (2007) Dopamine dysregulation syndrome: implications for a dopamine hypothesis of bipolar disorder. Acta Psychiatr Scand Suppl: 41–49

  • Berridge KC, Kringelbach ML (2008) Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology 199:457–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beurel E, Jope R (2014) Inflammation and lithium: clues to mechanisms contributing to suicide-linked traits. Transl Psychiatry 4:e488–e488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bidwell LC, McClernon FJ, Kollins SH (2011) Cognitive enhancers for the treatment of ADHD. Pharmacol Biochem Behav 99:262–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blier P, De Montigny C (1985) Short-term lithium administration enhances serotonergic neurotransmission: electrophysiological evidence in the rat CNS. Eur J Pharmacol 113:69–77

    Article  CAS  PubMed  Google Scholar 

  • Bliss EL, Ailion J (1970) The effect of lithium upon brain neuroamines. Brain Res 24:305–310

    Article  CAS  PubMed  Google Scholar 

  • Boersma GJ, Lee RS, Cordner ZA, Ewald ER, Purcell RH, Moghadam AA, Tamashiro KL (2014) Prenatal stress decreases Bdnf expression and increases methylation of Bdnf exon IV in rats. Epigenetics 9:437–447

    Article  PubMed  Google Scholar 

  • Bowden CL, Calabrese JR, Sachs G, Yatham LN, Asghar SA, Hompland M, Montgomery P, Earl N, Smoot TM, DeVeaugh-Geiss J, Lamictal 606 Study G (2003) A placebo-controlled 18-month trial of lamotrigine and lithium maintenance treatment in recently manic or hypomanic patients with bipolar I disorder. Arch Gen Psychiatry 60: 392-400

  • Bradfield LA, McNally GP (2010) The role of nucleus accumbens shell in learning about neutral versus excitatory stimuli during Pavlovian fear conditioning. Learn Mem 17:337–343

    Article  PubMed  Google Scholar 

  • Brischoux F, Chakraborty S, Brierley DI, Ungless MA (2009) Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc Natl Acad Sci U S A 106:4894–4899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bschor T, Lewitzka U, Sasse J, Adli M, Koberle U, Bauer M (2003) Lithium augmentation in treatment-resistant depression: clinical evidence, serotonergic and endocrine mechanisms. Pharmacopsychiatry 36(Suppl 3):S230-234

    CAS  PubMed  Google Scholar 

  • Burdick KE, Braga RJ, Nnadi CU, Shaya Y, Stearns WH, Malhotra AK (2012) Placebo-controlled adjunctive trial of pramipexole in patients with bipolar disorder: targeting cognitive dysfunction. J Clin Psychiatry 73:103–112

    Article  CAS  PubMed  Google Scholar 

  • Burke AR, Miczek KA (2014) Stress in adolescence and drugs of abuse in rodent models: role of dopamine, CRF, and HPA axis. Psychopharmacology 231:1557–1580

    Article  CAS  PubMed  Google Scholar 

  • Butcher SP, Fairbrother IS, Kelly JS, Arbuthnott GW (1990) Effects of selective monoamine oxidase inhibitors on the in vivo release and metabolism of dopamine in the rat striatum. J Neurochem 55:981–988

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Leonard BE (1994) The effects of chronic lithium chloride administration on some behavioural and immunological changes in the bilaterally olfactory bulbectomized rat. J Psychopharmacol 8:40–47

    Article  Google Scholar 

  • Cai Y, Xing L, Yang T, Chai R, Wang J, Bao J, Shen W, Ding S, Chen G (2021) The neurodevelopmental role of dopaminergic signaling in neurological disorders. Neurosci Lett 741:135540

    Article  CAS  PubMed  Google Scholar 

  • Can A, Frost DO, Cachope R, Cheer JF, Gould TD (2016) Chronic lithium treatment rectifies maladaptive dopamine release in the nucleus accumbens. J Neurochem 139:576–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao JL, Covington HE 3rd, Friedman AK, Wilkinson MB, Walsh JJ, Cooper DC, Nestler EJ, Han MH (2010) Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action. J Neurosci 30:16453–16458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carli M, Morissette M, Hebert C, Di Paolo T, Reader TA (1997) Effects of a chronic lithium treatment on central dopamine neurotransporters. Biochem Pharmacol 54:391–397

    Article  CAS  PubMed  Google Scholar 

  • Cavichioli AM, Santos-Silva T, Grace AA, Guimaraes FS, Gomes FV (2022) Levetiracetam attenuates adolescent stress-induced behavioral and electrophysiological changes associated with schizophrenia in adult rats. Schizophr Bull

  • Celada P, Artigas F (1993) Monoamine oxidase inhibitors increase preferentially extracellular 5-hydroxytryptamine in the midbrain raphe nuclei. A brain microdialysis study in the awake rat. Naunyn Schmiedebergs Arch Pharmacol 347:583–590

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee D, Beaulieu JM (2022) Inhibition of glycogen synthase kinase 3 by lithium, a mechanism in search of specificity. Front Mol Neurosci 15:1028963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen RW, Chuang DM (1999) Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity. J Biol Chem 274:6039–6042

    Article  CAS  PubMed  Google Scholar 

  • Chen RW, Qin ZH, Ren M, Kanai H, Chalecka-Franaszek E, Leeds P, Chuang DM (2003) Regulation of c-Jun N-terminal kinase, p38 kinase and AP-1 DNA binding in cultured brain neurons: roles in glutamate excitotoxicity and lithium neuroprotection. J Neurochem 84:566–575

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Desse S, Martinez A, Worthen RJ, Jope RS, Beurel E (2018) TNFα disrupts blood brain barrier integrity to maintain prolonged depressive-like behavior in mice. Brain Behav Immun 69:556–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu CT, Chuang DM (2010) Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol Ther 128:281–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou KL, Liang K, Sareen J (2011) The association between social isolation and DSM-IV mood, anxiety, and substance use disorders: wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions. J Clin Psychiatry 72:1468–1476

    Article  PubMed  Google Scholar 

  • Cohen AI, Todd RD, Harmon S, O’Malley KL (1992) Photoreceptors of mouse retinas possess D4 receptors coupled to adenylate cyclase. Proc Natl Acad Sci U S A 89:12093–12097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colzi A, d’Agostini F, Kettler R, Borroni E, Da Prada M (1990) Effect of selective and reversible MAO inhibitors on dopamine outflow in rat striatum: a microdialysis study. J Neural Transm Suppl 32:79–84

    CAS  PubMed  Google Scholar 

  • Coque L, Mukherjee S, Cao JL, Spencer S, Marvin M, Falcon E, Sidor MM, Birnbaum SG, Graham A, Neve RL, Gordon E, Ozburn AR, Goldberg MS, Han MH, Cooper DC, McClung CA (2011) Specific role of VTA dopamine neuronal firing rates and morphology in the reversal of anxiety-related, but not depression-related behavior in the ClockDelta19 mouse model of mania. Neuropsychopharmacology 36:1478–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cousins DA, Butts K, Young AH (2009) The role of dopamine in bipolar disorder. Bipolar Disord 11:787–806

    Article  CAS  PubMed  Google Scholar 

  • Curet O, Damoiseau-Ovens G, Sauvage C, Sontag N, Avenet P, Depoortere H, Caille D, Bergis O, Scatton B (1998) Preclinical profile of befloxatone, a new reversible MAO-A inhibitor. J Affect Disord 51:287–303

    Article  CAS  PubMed  Google Scholar 

  • D’Aquila PS, Collu M, Devoto P, Serra G (2000) Chronic lithium chloride fails to prevent imipramine-induced sensitization to the dopamine D(2)-like receptor agonist quinpirole. Eur J Pharmacol 395:157–160

    Article  CAS  PubMed  Google Scholar 

  • das Chagas Rodrigues F, Zwicker AP, Calil HM (1985) Chronic lithium prevents REM sleep deprivation-induced increased responsiveness to apomorphine. J Pharm Pharmacol 37: 210-211

  • Dash PK, Johnson D, Clark J, Orsi SA, Zhang M, Zhao J, Grill RJ, Moore AN, Pati S (2011) Involvement of the glycogen synthase kinase-3 signaling pathway in TBI pathology and neurocognitive outcome. PLoS ONE 6:e24648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Montigny C, Cournoyer G, Morissette R, Langlois R, Caille G (1983) Lithium carbonate addition in tricyclic antidepressant-resistant unipolar depression. Correlations with the neurobiologic actions of tricyclic antidepressant drugs and lithium ion on the serotonin system. Arch Gen Psychiatry 40:1327–1334

    Article  PubMed  Google Scholar 

  • de Sousa RT, Zanetti MV, Talib LL, Serpa MH, Chaim TM, Carvalho AF, Brunoni AR, Busatto GF, Gattaz WF, Machado-Vieira R (2015) Lithium increases platelet serine-9 phosphorylated GSK-3beta levels in drug-free bipolar disorder during depressive episodes. J Psychiatr Res 62:78–83

    Article  PubMed  Google Scholar 

  • de Vita VM, Zapparoli HR, Reimer AE, Brandao ML, de Oliveira AR (2021) Dopamine D2 receptors in the expression and extinction of contextual and cued conditioned fear in rats. Exp Brain Res 239:1963–1974

    Article  PubMed  Google Scholar 

  • De Sarno P, Li X, Jope RS (2002) Regulation of Akt and glycogen synthase kinase-3 beta phosphorylation by sodium valproate and lithium. Neuropharmacology 43:1158–1164

    Article  PubMed  Google Scholar 

  • Dehpour AR, Samini M, Aliebrahimi F, Chavoushzadeh MA (1998) The effect of acute lithium and rubidium pretreatment on apomorphine-induced pecking in pigeons. Pharmacol Toxicol 82:147–152

    Article  CAS  PubMed  Google Scholar 

  • Dethy S, Manto M, Bastianelli E, Gangji V, Laute MA, Goldman S, Hildebrand J (1997) Cerebellar spongiform degeneration induced by acute lithium intoxication in the rat. Neurosci Lett 224:25–28

    Article  CAS  PubMed  Google Scholar 

  • Dill J, Wang H, Zhou F, Li S (2008) Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS. J Neurosci 28:8914–8928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donovan A, Wood RI (2022) Effort-based decision making in response to high-dose androgens: role of dopamine receptors. Behav Pharmacol 33:435–441

    Article  CAS  PubMed  Google Scholar 

  • Doremus-Fitzwater TL, Spear LP (2016) Reward-centricity and attenuated aversions: an adolescent phenotype emerging from studies in laboratory animals. Neurosci Biobehav Rev 70:121–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Wei Y, Liu L, Wang Y, Khairova R, Blumenthal R, Tragon T, Hunsberger JG, Machado-Vieira R, Drevets W (2010) A kinesin signaling complex mediates the ability of GSK-3β to affect mood-associated behaviors. Proc Natl Acad Sci 107:11573–11578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebstein RP, Eliashar S, Belmaker RH, Ben-Uriah Y, Yehuda S (1980) Chronic lithium treatment and dopamine-mediated behavior. Biol Psychiatry 15:459–467

    CAS  PubMed  Google Scholar 

  • Fadok JP, Darvas M, Dickerson TM, Palmiter RD (2010) Long-term memory for Pavlovian fear conditioning requires dopamine in the nucleus accumbens and basolateral amygdala. PLoS ONE 5:e12751

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferensztajn-Rochowiak E, Chlopocka-Wozniak M, Rybakowski JK (2021) Ultra-long-term lithium therapy: all-important matters and a case of successful 50-year lithium treatment. Braz J Psychiatry 43:407–413

    Article  PubMed  Google Scholar 

  • Ferrie L, Young AH, McQuade R (2006) Effect of lithium and lithium withdrawal on potassium-evoked dopamine release and tyrosine hydroxylase expression in the rat. Int J Neuropsychopharmacol 9:729–735

    Article  CAS  PubMed  Google Scholar 

  • Ferrie LJ, Gartside SE, Martin KM, Young AH, McQuade R (2008) Effect of chronic lithium treatment on D2/3 autoreceptor regulation of dopaminergic function in the rat. Pharmacol Biochem Behav 90:218–225

    Article  CAS  PubMed  Google Scholar 

  • Freland L, Beaulieu JM (2012) Inhibition of GSK3 by lithium, from single molecules to signaling networks. Front Mol Neurosci 5:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey BN, Valvassori SS, Reus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F, Quevedo J (2006) Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci 31:326–332

    PubMed  PubMed Central  Google Scholar 

  • Friedman E, Gershon S (1973) Effect of lithium on brain dopamine. Nature 243:520–521

    Article  CAS  PubMed  Google Scholar 

  • Friedman E, Dallob A, Levine G (1979) The effect of long-term lithium treatment on reserpine-induced supersensitivity in dopaminergic and serotonergic transmission. Life Sci 25:1263–1266

    Article  CAS  PubMed  Google Scholar 

  • Gallager DW, Pert A, Bunney WE Jr (1978) Haloperidol-induced presynaptic dopamine supersensitivity is blocked by chronic lithium. Nature 273:309–312

    Article  CAS  PubMed  Google Scholar 

  • Gambarana C, Ghiglieri O, Masi F, Scheggi S, Tagliamonte A, De Montis MG (1999) The effects of long-term administration of rubidium or lithium on reactivity to stress and on dopamine output in the nucleus accumbens in rats. Brain Res 826:200–209

    Article  CAS  PubMed  Google Scholar 

  • Gambarana C, Mangiavacchi S, Masi F, Scheggi S, Tagliamonte A, Tolu P, De Montis MG (2000) Long-term lithium administration abolishes the resistance to stress in rats sensitized to morphine. Brain Res 877:218–225

    Article  CAS  PubMed  Google Scholar 

  • Gambarana C, Masi F, Leggio B, Grappi S, Nanni G, Scheggi S, De Montis MG, Tagliamonte A (2003) Acquisition of a palatable-food-sustained appetitive behavior in satiated rats is dependent on the dopaminergic response to this food in limbic areas. Neuroscience 121:179–187

    Article  CAS  PubMed  Google Scholar 

  • Gardner E, Hirshhorn I, Seeger T, Weiss M, Makman M (1980) Comparative effects of lithium on drug-induced and lesion-induced dopaminergic supersensitivity. Society of Neuroscience Abstracts. p. 546

  • Gatzke-Kopp LM (2011) The canary in the coalmine: the sensitivity of mesolimbic dopamine to environmental adversity during development. Neurosci Biobehav Rev 35:794–803

    Article  CAS  PubMed  Google Scholar 

  • Geddes JR, Burgess S, Hawton K, Jamison K, Goodwin GM (2004) Long-term lithium therapy for bipolar disorder: systematic review and meta-analysis of randomized controlled trials. Am J Psychiatry 161:217–222

    Article  PubMed  Google Scholar 

  • Gerner RH, Post RM, Bunney WE Jr (1976) A dopaminergic mechanism in mania. Am J Psychiatry 133:1177–1180

    Article  CAS  PubMed  Google Scholar 

  • Goldberg LI, Volkman PH, Kohli JD (1978) A comparison of the vascular dopamine receptor with other dopamine receptors. Annu Rev Pharmacol Toxicol 18:57–79

    Article  CAS  PubMed  Google Scholar 

  • Gomes FV, Grace AA (2021) Beyond dopamine receptor antagonism: new targets for schizophrenia treatment and prevention. Int J Mol Sci 22

  • Goodwin GM (1994) Recurrence of mania after lithium withdrawal. Implications for the use of lithium in the treatment of bipolar affective disorder. Br J Psychiatry 164:149–152

    Article  CAS  PubMed  Google Scholar 

  • Gould TJ, Keith RA, Bhat RV (2001) Differential sensitivity to lithium’s reversal of amphetamine-induced open-field activity in two inbred strains of mice. Behav Brain Res 118:95–105

    Article  CAS  PubMed  Google Scholar 

  • Grace AA, Floresco SB, Goto Y, Lodge DJ (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 30:220–227

    Article  CAS  PubMed  Google Scholar 

  • Grahame-Smith DG, Green AR (1974) The role of brain 5-hydroxytryptamine in the hyperactivity produced in rats by lithium and monoamine oxidase inhibition. Br J Pharmacol 52:19–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greengard P (2001) The neurobiology of slow synaptic transmission. Science 294:1024–1030

    Article  CAS  PubMed  Google Scholar 

  • Grof P (1999) Excellent lithium responders: people whose lives have been changed by lithium prophylaxis. Lithium 50:36–51

    Google Scholar 

  • Grossman GH, Mistlberger RE, Antle MC, Ehlen JC, Glass JD (2000) Sleep deprivation stimulates serotonin release in the suprachiasmatic nucleus. NeuroReport 11:1929–1932

    Article  CAS  PubMed  Google Scholar 

  • Grunze H (2014) Stimulants for treating bipolar disorder: pro and con. Harv Rev Psychiatry 22:358–362

    Article  PubMed  Google Scholar 

  • Hall FS, Wilkinson LS, Humby T, Inglis W, Kendall DA, Marsden CA, Robbins TW (1998) Isolation rearing in rats: pre- and postsynaptic changes in striatal dopaminergic systems. Pharmacol Biochem Behav 59:859–872

    Article  CAS  PubMed  Google Scholar 

  • Harsch HH, Miller M, Young LD (1985) Induction of mania by L-dopa in a nonbipolar patient. J Clin Psychopharmacol 5:338–339

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto R, Takei N, Shimazu K, Christ L, Lu B, Chuang DM (2002) Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: an essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology 43:1173–1179

    Article  CAS  PubMed  Google Scholar 

  • Hasue RH, Shammah-Lagnado SJ (2002) Origin of the dopaminergic innervation of the central extended amygdala and accumbens shell: a combined retrograde tracing and immunohistochemical study in the rat. J Comp Neurol 454:15–33

    Article  CAS  PubMed  Google Scholar 

  • Haussmann R, Lewitzka U, Severus E, Bauer M (2017) Correct treatment of mood disorders with lithium. Nervenarzt 88:1323–1334

    Article  CAS  PubMed  Google Scholar 

  • Heijnen WT, De Fruyt J, Wierdsma AI, Sienaert P, Birkenhäger TK (2015) Efficacy of tranylcypromine in bipolar depression: a systematic review. J Clin Psychopharmacol 35:700–705

    Article  CAS  PubMed  Google Scholar 

  • Hesketh JE, Nicolaou NM, Arbuthnott GW, Wright AK (1978) The effect of chronic lithium administration on dopamine metabolism in rat striatum. Psychopharmacology 56:163–166

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa N, Niwa S, Tanaka Y (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68:610–638

    Article  CAS  PubMed  Google Scholar 

  • Ho AK, Loh HH, Craves F, Hitzemann RJ, Gershon S (1970) The effect of prolonged lithium treatment on the synthesis rate and turnover of monoamines in brain regions of rats. Eur J Pharmacol 10:72–78

    Article  CAS  PubMed  Google Scholar 

  • Howes O, McCutcheon R, Stone J (2015) Glutamate and dopamine in schizophrenia: an update for the 21st century. J Psychopharmacol 29:97–115

    Article  PubMed  PubMed Central  Google Scholar 

  • Howes OD, McCutcheon R, Owen MJ, Murray RM (2017) The role of genes, stress, and dopamine in the development of schizophrenia. Biol Psychiatry 81:9–20

    Article  CAS  PubMed  Google Scholar 

  • Hu M, Gao Y, El-Mallakh RS (2021) Neuronal cells from bipolar individuals are more susceptible to glutamate induced apoptosis than cells from non-bipolar subjects. J Affect Disord 294:568–573

    Article  CAS  PubMed  Google Scholar 

  • Hui T, Kandola A, Shen L, Lewis G, Osborn D, Geddes J, Hayes J (2019) A systematic review and meta-analysis of clinical predictors of lithium response in bipolar disorder. Acta Psychiatr Scand 140:94–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichikawa J, Dai J, Meltzer HY (2005) Lithium differs from anticonvulsant mood stabilizers in prefrontal cortical and accumbal dopamine release: role of 5-HT(1A) receptor agonism. Brain Res 1049:182–190

    Article  CAS  PubMed  Google Scholar 

  • Imperato A, Angelucci L, Casolini P, Zocchi A, Puglisi-Allegra S (1992) Repeated stressful experiences differently affect limbic dopamine release during and following stress. Brain Res 577:194–199

    Article  CAS  PubMed  Google Scholar 

  • Inkster B, Nichols TE, Saemann PG, Auer DP, Holsboer F, Muglia P, Matthews PM (2009) Association of GSK3beta polymorphisms with brain structural changes in major depressive disorder. Arch Gen Psychiatry 66:721–728

    Article  CAS  PubMed  Google Scholar 

  • Iwahashi K, Nishizawa D, Narita S, Numajiri M, Murayama O, Yoshihara E, Onozawa Y, Nagahori K, Fukamauchi F, Ikeda K, Ishigooka J (2014) Haplotype analysis of GSK-3beta gene polymorphisms in bipolar disorder lithium responders and nonresponders. Clin Neuropharmacol 37:108–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junde Z, Tingting L, Lu Z, Shan C, Dan Y (2022) Lithium chloride promotes neural functional recovery after local cerebral ischemia injury in rats through Wnt signaling pathway activation. Folia Morphol (Warsz)

  • Kaidanovich-Beilin O, Woodgett JR (2011) GSK-3: functional insights from cell biology and animal models. Front Mol Neurosci 4:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalivas PW, Duffy P (1995) Selective activation of dopamine transmission in the shell of the nucleus accumbens by stress. Brain Res 675:325–328

    Article  CAS  PubMed  Google Scholar 

  • Karkhanis AN, Leach AC, Yorgason JT, Uneri A, Barth S, Niere F, Alexander NJ, Weiner JL, McCool BA, Raab-Graham KF, Ferris MJ, Jones SR (2019) Chronic social isolation stress during peri-adolescence alters presynaptic dopamine terminal dynamics via augmentation in accumbal dopamine availability. ACS Chem Neurosci 10:2033–2044

    Article  CAS  PubMed  Google Scholar 

  • Katz RI, Chase TN, Kopin IJ (1968) Evoked release of norepinephrine and serotonin from brain slices: inhibitoon by lithium. Science 162:466–467

    Article  CAS  PubMed  Google Scholar 

  • Kazemi H, Noori-Zadeh A, Darabi S, Rajaei F (2018) Lithium prevents cell apoptosis through autophagy induction. Bratisl Lek Listy 119:234–239

    CAS  PubMed  Google Scholar 

  • Kebabian JW (1978) Multiple classes of dopamine receptors in mammalian central nervous system: the involvement of dopamine-sensitive adenylyl cyclase. Life Sci 23:479–483

    Article  CAS  PubMed  Google Scholar 

  • Kelley AE, Berridge KC (2002) The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 22:3306–3311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Kessel SP, Bullock A, van Dijk G, El Aidy S (2022) Parkinson’s disease medication alters small intestinal motility and microbiota composition in healthy rats. mSystems 7: e0119121

  • Kessing LV, Hellmund G, Andersen PK (2012) An observational nationwide register based cohort study on lamotrigine versus lithium in bipolar disorder. J Psychopharmacol 26:644–652

    Article  PubMed  Google Scholar 

  • Kessing LV, Bauer M, Nolen WA, Severus E, Goodwin GM, Geddes J (2018) Effectiveness of maintenance therapy of lithium vs other mood stabilizers in monotherapy and in combinations: a systematic review of evidence from observational studies. Bipolar Disord

  • Kitaichi Y, Inoue T, Nakagawa S, Izumi T, Koyama T (2006) Effect of co-administration of subchronic lithium pretreatment and acute MAO inhibitors on extracellular monoamine levels and the expression of contextual conditioned fear in rats. Eur J Pharmacol 532:236–245

    Article  CAS  PubMed  Google Scholar 

  • Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG (2019) Dopamine: functions, signaling, and association with neurological diseases. Cell Mol Neurobiol 39:31–59

    Article  PubMed  Google Scholar 

  • Kleindienst N, Engel R, Greil W (2005) Which clinical factors predict response to prophylactic lithium? A systematic review for bipolar disorders. Bipolar Disord 7:404–417

    Article  CAS  PubMed  Google Scholar 

  • Knijff EM, Nadine Breunis M, Kupka RW, De Wit HJ, Ruwhof C, Akkerhuis GW, Nolen WA, Drexhage HA (2007) An imbalance in the production of IL-1β and IL-6 by monocytes of bipolar patients: restoration by lithium treatment. Bipolar Disord 9:743–753

    Article  CAS  PubMed  Google Scholar 

  • Ko GN, Leckman JF, Heninger GR (1981) Induction of rapid mood cycling during L-dopa treatment in a bipolar patient. Am J Psychiatry 138:1624–1625

    Article  CAS  PubMed  Google Scholar 

  • Kouhnavardi S, Ecevitoglu A, Dragacevic V, Sanna F, Arias-Sandoval E, Kalaba P, Kirchhofer M, Lubec J, Niello M, Holy M, Zehl M, Pillwein M, Wackerlig J, Murau R, Mohrmann A, Beard KR, Sitte HH, Urban E, Sagheddu C, Pistis M, Plasenzotti R, Salamone JD, Langer T, Lubec G, Monje FJ (2022) A novel and selective dopamine transporter inhibitor, (S)-MK-26, promotes hippocampal synaptic plasticity and restores effort-related motivational dysfunctions. Biomolecules 12

  • Kowianski P, Lietzau G, Czuba E, Waskow M, Steliga A, Morys J (2018) BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol 38:579–593

    Article  CAS  PubMed  Google Scholar 

  • Krishnan V, Nestler EJ (2010) Linking molecules to mood: new insight into the biology of depression. Am J Psychiatry 167:1305–1320

    Article  PubMed  PubMed Central  Google Scholar 

  • Leucht S, Helfer B, Dold M, Kissling W, McGrath JJ (2015) Lithium for schizophrenia. Cochrane Database of Systematic Reviews

  • Levita L, Dalley JW, Robbins TW (2002) Nucleus accumbens dopamine and learned fear revisited: a review and some new findings. Behav Brain Res 137:115–127

    Article  CAS  PubMed  Google Scholar 

  • Lewitzka U, Severus E, Bauer R, Ritter P, Muller-Oerlinghausen B, Bauer M (2015) The suicide prevention effect of lithium: more than 20 years of evidence-a narrative review. Int J Bipolar Disord 3:32

    Article  CAS  PubMed  Google Scholar 

  • Li C, Chen P, Smith MS (1999) Neuropeptide Y and tuberoinfundibular dopamine activities are altered during lactation: role of prolactin. Endocrinology 140:118–123

    Article  CAS  PubMed  Google Scholar 

  • Li P, Snyder GL, Vanover KE (2016) Dopamine targeting drugs for the treatment of schizophrenia: past, present and future. Curr Top Med Chem 16:3385–3403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YF, Huang MC, Liu HC (2013) Glycogen synthase kinase 3beta gene polymorphisms may be associated with bipolar I disorder and the therapeutic response to lithium. J Affect Disord 147:401–406

    Article  CAS  PubMed  Google Scholar 

  • Ling TJ, Forster GL, Watt MJ, Korzan WJ, Renner KJ, Summers CH (2009) Social status differentiates rapid neuroendocrine responses to restraint stress. Physiol Behav 96:218–232

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Tang QQ, Wang D, Song SP, Yang XN, Hu SW, Wang ZY, Xu Z, Liu H, Yang JX, Montgomery SE, Zhang H, Han MH, Ding HL, Cao JL (2020) Mesocortical BDNF signaling mediates antidepressive-like effects of lithium. Neuropsychopharmacology 45:1557–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Yu J, Liu HB, Yao Q, Zhang Y (2022) Chronic fluoxetine enhances extinction therapy for PTSD by evaluating brain glucose metabolism in rats: an [(18)F]FDG PET study. Ann Nucl Med

  • Lu Z, Pu C, Zhang Y, Sun Y, Liao Y, Kang Z, Feng X, Yue W (2022) Oxidative stress and psychiatric disorders: evidence from the bidirectional Mendelian randomization study. Antioxidants (Basel) 11

  • Machado-Vieira R, Andreazza AC, Viale CI, Zanatto V, Cereser V Jr, da Silva VR, Kapczinski F, Portela LV, Souza DO, Salvador M, Gentil V (2007) Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects. Neurosci Lett 421:33–36

    Article  CAS  PubMed  Google Scholar 

  • Malhi GS, Outhred T (2016) Therapeutic mechanisms of lithium in bipolar disorder: recent advances and current understanding. CNS Drugs 30:931–949

    Article  CAS  PubMed  Google Scholar 

  • Malhi GS, Tanious M, Das P, Coulston CM, Berk M (2013) Potential mechanisms of action of lithium in bipolar disorder. Current Understanding CNS Drugs 27:135–153

    Article  PubMed  Google Scholar 

  • Malhi GS, Gessler D, Outhred T (2017) The use of lithium for the treatment of bipolar disorder: recommendations from clinical practice guidelines. J Affect Disord 217:266–280

    Article  CAS  PubMed  Google Scholar 

  • Manji HK, Chen G (2002) PKC, MAP kinases and the bcl-2 family of proteins as long-term targets for mood stabilizers. Mol Psychiatry 7(Suppl 1):S46-56

    Article  CAS  PubMed  Google Scholar 

  • Mathews IZ, Waters P, McCormick CM (2009) Changes in hyporesponsiveness to acute amphetamine and age differences in tyrosine hydroxylase immunoreactivity in the brain over adolescence in male and female rats. Dev Psychobiol 51:417–428

    Article  CAS  PubMed  Google Scholar 

  • Maurer IC, Schippel P, Volz HP (2009) Lithium-induced enhancement of mitochondrial oxidative phosphorylation in human brain tissue. Bipolar Disord 11:515–522

    Article  CAS  PubMed  Google Scholar 

  • McCormick CM (2010) An animal model of social instability stress in adolescence and risk for drugs of abuse. Physiol Behav 99:194–203

    Article  CAS  PubMed  Google Scholar 

  • McFarlane HG, Steele J, Vinion K, Bongiovanni R, Double M, Jaskiw GE (2011) Acute lithium administration selectively lowers tyrosine levels in serum and brain. Brain Res 1420:29–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntyre IM, Kuhn C, Demitriou S, Fucek FR, Stanley M (1983) Modulating role of lithium on dopamine turnover, prolactin release, and behavioral supersensitivity following haloperidol and reserpine. Psychopharmacology 81:150–154

    Article  CAS  PubMed  Google Scholar 

  • Mielke K, Herdegen T (2000) JNK and p38 stresskinases–degenerative effectors of signal-transduction-cascades in the nervous system. Prog Neurobiol 61:45–60

    Article  CAS  PubMed  Google Scholar 

  • Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B (2011) Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiat 70:663–671

    Article  CAS  PubMed  Google Scholar 

  • Mines MA, Yuskaitis CJ, King MK, Beurel E, Jope RS (2010) GSK3 influences social preference and anxiety-related behaviors during social interaction in a mouse model of fragile X syndrome and autism. PLoS ONE 5:e9706

    Article  PubMed  PubMed Central  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    Article  CAS  PubMed  Google Scholar 

  • Morrow BA, Redmond AJ, Roth RH, Elsworth JD (2000) The predator odor, TMT, displays a unique, stress-like pattern of dopaminergic and endocrinological activation in the rat. Brain Res 864:146–151

    Article  CAS  PubMed  Google Scholar 

  • Munkholm K, Braüner JV, Kessing LV, Vinberg M (2013) Cytokines in bipolar disorder vs. healthy control subjects: a systematic review and meta-analysis. J Psychiatr Res 47:1119–1133

    Article  PubMed  Google Scholar 

  • Munoz-Montano JR, Lim F, Moreno FJ, Avila J, Diaz-Nido J (1999) Glycogen synthase kinase-3 modulates neurite outgrowth in cultured neurons: possible implications for neurite pathology in Alzheimer’s disease. J Alzheimers Dis 1:361–378

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine Hydroxylase. The initial step in norepinephrine biosynthesis. J Biol Chem 239:2910–2917

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S (2022) Integrated pathophysiology of schizophrenia, major depression, and bipolar disorder as monoamine axon disorder. Front Biosci (schol Ed) 14:4

    Article  CAS  PubMed  Google Scholar 

  • Nassar A, Azab AN (2014) Effects of lithium on inflammation. ACS Chem Neurosci 5:451–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nässberger L, Träskman-Bendz L (1993) Increased soluble interleukin-2 receptor concentrations in suicide attempters. Acta Psychiatr Scand 88:48–52

    Article  PubMed  Google Scholar 

  • Nelson JC, Byck R (1982) Rapid response to lithium in phenelzine non-responders. Br J Psychiatry 141:85–86

    Article  CAS  PubMed  Google Scholar 

  • Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15:7539–7547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nibuya M, Nestler EJ, Duman RS (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 16:2365–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nivoli AM, Murru A, Vieta E (2010) Lithium: still a cornerstone in the long-term treatment in bipolar disorder? Neuropsychobiology 62:27–35

    Article  CAS  PubMed  Google Scholar 

  • Noseda ACD, Rodrigues LS, Targa ADS, Ilkiw JL, Fagotti J, Dos Santos PD, Cecon E, Markus RP, Solimena M, Jockers R, Lima MMS (2021) MT2 melatonin receptors expressed in the olfactory bulb modulate depressive-like behavior and olfaction in the 6-OHDA model of Parkinson’s disease. Eur J Pharmacol 891:173722

    Article  CAS  PubMed  Google Scholar 

  • Nozu T, Furukawa T (1976) Effects of lithium chloride administered in combination with methamphetamine or a reserpine-like drug on brain norepinephrine and dopamine metabolism in rats. Nihon Yakurigaku Zasshi 72:715–723

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell KC, Gould TD (2007) The behavioral actions of lithium in rodent models: leads to develop novel therapeutics. Neurosci Biobehav Rev 31:932–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto Y, Motohasi N, Hayakawa H, Muraoka M, Yamawaki S (1996) Addition of lithium to chronic antidepressant treatment potentiates presynaptic serotonergic function without changes in serotonergic receptors in the rat cerebral cortex. Neuropsychobiology 33:17–20

    Article  CAS  PubMed  Google Scholar 

  • Otero Losada ME, Rubio MC (1985) Striatal dopamine and motor activity changes observed shortly after lithium administration. Naunyn Schmiedebergs Arch Pharmacol 330:169–174

    Article  CAS  PubMed  Google Scholar 

  • Pan JQ, Lewis MC, Ketterman JK, Clore EL, Riley M, Richards KR, Berry-Scott E, Liu X, Wagner FF, Holson EB, Neve RL, Biechele TL, Moon RT, Scolnick EM, Petryshen TL, Haggarty SJ (2011) AKT kinase activity is required for lithium to modulate mood-related behaviors in mice. Neuropsychopharmacology 36:1397–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paus T (2001) Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2:417–424

    Article  CAS  PubMed  Google Scholar 

  • Pavlov D, Bettendorff L, Gorlova A, Olkhovik A, Kalueff AV, Ponomarev ED, Inozemtsev A, Chekhonin V, Lesch K-P, Anthony DC (2019) Neuroinflammation and aberrant hippocampal plasticity in a mouse model of emotional stress evoked by exposure to ultrasound of alternating frequencies. Prog Neuropsychopharmacol Biol Psychiatry 90:104–116

    Article  PubMed  Google Scholar 

  • Pearlson GD, Wong DF, Tune LE, Ross CA, Chase GA, Links JM, Dannals RF, Wilson AA, Ravert HT, Wagner HN (1995) In vivo D2 dopamine receptor density in psychotic and nonpsychotic patients with bipolar disorder. Arch Gen Psychiatry 52:471–477

    Article  CAS  PubMed  Google Scholar 

  • Pei Q, Leslie RA, Grahame-Smith DG, Zetterstrom TS (1995) 5-HT efflux from rat hippocampus in vivo produced by 4-aminopyridine is increased by chronic lithium administration. NeuroReport 6:716–720

    Article  CAS  PubMed  Google Scholar 

  • Pert A, Rosenblatt JE, Sivit C, Pert CB, Bunney WE Jr (1978) Long-term treatment with lithium prevents the development of dopamine receptor supersensitivity. Science 201:171–173

    Article  CAS  PubMed  Google Scholar 

  • Perugi G, Sani G, Tondo L (2019) Practical guide to the use of lithium in the treatment of bipolar disorder patients. About Books, Rome

    Google Scholar 

  • Pezze MA, Feldon J (2004) Mesolimbic dopaminergic pathways in fear conditioning. Prog Neurobiol 74:301–320

    Article  CAS  PubMed  Google Scholar 

  • Phan DH, Shin EJ, Jeong JH, Tran HQ, Sharma N, Nguyen BT, Jung TW, Nah SY, Saito K, Nabeshima T, Kim HC (2020) Lithium attenuates d-amphetamine-induced hyperlocomotor activity in mice via inhibition of interaction between cyclooxygenase-2 and indoleamine-2,3-dioxygenase. Clin Exp Pharmacol Physiol 47:790–797

    Article  CAS  PubMed  Google Scholar 

  • Philpot RM, Wecker L, Kirstein CL (2009) Repeated ethanol exposure during adolescence alters the developmental trajectory of dopaminergic output from the nucleus accumbens septi. Int J Dev Neurosci 27:805–815

    Article  CAS  PubMed  Google Scholar 

  • Poitou P, Bohuon C (1975) Catecholamine metabolism in the rat brain after short and long term lithium administration. J Neurochem 25:535–537

    Article  CAS  PubMed  Google Scholar 

  • Polyakova M, Stuke K, Schuemberg K, Mueller K, Schoenknecht P, Schroeter ML (2015) BDNF as a biomarker for successful treatment of mood disorders: a systematic & quantitative meta-analysis. J Affect Disord 174:432–440

    Article  CAS  PubMed  Google Scholar 

  • Popovic N, Stojiljkovic V, Pejic S, Todorovic A, Pavlovic I, Gavrilovic L, Pajovic SB (2019) Modulation of hippocampal antioxidant defense system in chronically stressed rats by lithium. Oxid Med Cell Longev 2019:8745376

    Article  PubMed  PubMed Central  Google Scholar 

  • Post RM (2018) The new news about lithium: an underutilized treatment in the United States. Neuropsychopharmacology 43:1174–1179

    Article  CAS  PubMed  Google Scholar 

  • Post RM, Speer AM, Hough CJ, Xing G (2003) Neurobiology of bipolar illness: implications for future study and therapeutics. Ann Clin Psychiatry 15:85–94

    Article  PubMed  Google Scholar 

  • Price LH, Charney DS, Delgado PL, Goodman WK, Krystal JH, Woods SW, Heninger GR (1990) Clinical studies of 5-HT function using i.v. L-Tryptophan Prog Neuropsychopharmacol Biol Psychiatry 14:459–472

    Article  CAS  PubMed  Google Scholar 

  • Price JB, Yates CG, Morath BA, Van De Wakker SK, Yates NJ, Butters K, Frye MA, McGee SL, Tye SJ (2021) Lithium augmentation of ketamine increases insulin signaling and antidepressant-like active stress coping in a rodent model of treatment-resistant depression. Transl Psychiatry 11:598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajkowska G (2002) Cell pathology in bipolar disorder. Bipolar Disord 4:105–116

    Article  PubMed  Google Scholar 

  • Rana AK, Sharma S, Patial V, Singh D (2022) Lithium therapy subdues neuroinflammation to maintain pyramidal cells arborization and rescues neurobehavioural impairments in ovariectomized rats. Mol Neurobiol 59:1706–1723

    Article  CAS  PubMed  Google Scholar 

  • Recart VM, Spohr L, Soares MSP, de Mattos BDS, Bona NP, Pedra NS, Teixeira FC, Gamaro GD, Stefanello F, Spanevello R (2021) Gallic acid protects cerebral cortex, hippocampus, and striatum against oxidative damage and cholinergic dysfunction in an experimental model of manic-like behavior: comparison with lithium effects. Int J Dev Neurosci 81:167–178

    Article  CAS  PubMed  Google Scholar 

  • Reches A, Wagner HR, Jackson V, Fahn S (1982) Chronic lithium administration has no effect on haloperidol-induced supersensitivity of pre- and postsynaptic dopamine receptors in rat brain. Brain Res 246:172–177

    Article  CAS  PubMed  Google Scholar 

  • Reches A, Jackson-Lewis V, Fahn S (1984) Lithium does not interact with haloperidol in the dopaminergic pathways of the rat brain. Psychopharmacology 82:330–334

    Article  CAS  PubMed  Google Scholar 

  • Robb CE, de Jager CA, Ahmadi-Abhari S, Giannakopoulou P, Udeh-Momoh C, McKeand J, Price G, Car J, Majeed A, Ward H, Middleton L (2020) Associations of social isolation with anxiety and depression during the early COVID-19 pandemic: a survey of older adults in London. UK Front Psychiatry 11:591120

    Article  PubMed  Google Scholar 

  • Robbins TW, Jones GH, Wilkinson LS (1996) Behavioural and neurochemical effects of early social deprivation in the rat. J Psychopharmacol 10:39–47

    Article  CAS  PubMed  Google Scholar 

  • Rocha GS, Freire MAM, Paiva KM, Oliveira RF, Norrara B, Morais P, Oliveira LC, Engelberth R, Cavalcante JS, Cavalcanti J (2022) Effect of senescence on the tyrosine hydroxylase and S100B immunoreactivity in the nigrostriatal pathway of the rat. J Chem Neuroanat 124:102136

    Article  CAS  PubMed  Google Scholar 

  • Rubin E, Wooten G (1982) Neuroleptic-but not denervation-induced dopamine supersensitivity is blocked by lithium. Neurology 32: A 65

  • Rubin EH, Wooten GF (1984) The behavioral and biochemical effects of lithium on dopaminergic agonist-induced supersensitivity. Psychopharmacology 84:217–220

    Article  CAS  PubMed  Google Scholar 

  • Russo SJ, Nestler EJ (2013) The brain reward circuitry in mood disorders. Nat Rev Neurosci 14:609–625

    Article  CAS  PubMed  Google Scholar 

  • Rybakowski J (2000) Antiviral and immunomodulatory effect of lithium. Pharmacopsychiatry 33:159–164

    CAS  PubMed  Google Scholar 

  • Rybakowski J (2020) Lithium treatment - the state of the art for 2020. Psychiatr Pol 54:1047–1066

    Article  PubMed  Google Scholar 

  • Rybakowski JK, Chlopocka-Wozniak M, Suwalska A (2001) The prophylactic effect of long-term lithium administration in bipolar patients entering treatment in the 1970s and 1980s. Bipolar Disord 3:63–67

    Article  CAS  PubMed  Google Scholar 

  • Ryding E, Lindstrom M, Traskman-Bendz L (2008) The role of dopamine and serotonin in suicidal behaviour and aggression. Prog Brain Res 172:307–315

    Article  CAS  PubMed  Google Scholar 

  • Sabouri S, Esmailzadeh M, Sadeghinejad A, Eslami Shahrbabaki M, Asadikaram G, Nikvarz N (2022) The effect of adjunctive probiotics on markers of inflammation and oxidative stress in bipolar disorder: a double-blind, randomized, controlled trial. J Psychiatr Pract 28:373–382

    Article  PubMed  Google Scholar 

  • Savasta M, Dubois A, Scatton B (1986) Autoradiographic localization of D1 dopamine receptors in the rat brain with [3H]SCH 23390. Brain Res 375:291–301

    Article  CAS  PubMed  Google Scholar 

  • Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74:1–58

    Article  CAS  PubMed  Google Scholar 

  • Segal DS, Callaghan M, Mandell AJ (1975) Alterations in behaviour and catecholamine biosynthesis induced by lithium. Nature 254:58–59

    Article  CAS  PubMed  Google Scholar 

  • Seidisarouei M, Schable S, van Wingerden M, Trossbach SV, Korth C, Kalenscher T (2022) Social anhedonia as a disrupted-in-schizophrenia 1-dependent phenotype. Sci Rep 12:10182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selle V, Schalkwijk S, Vázquez G, Baldessarini R (2014) Treatments for acute bipolar depression: meta-analyses of placebo-controlled, monotherapy trials of anticonvulsants, lithium and antipsychotics. Pharmacopsychiatry 47:43–52

    Article  CAS  PubMed  Google Scholar 

  • Severus E, Taylor MJ, Sauer C, Pfennig A, Ritter P, Bauer M, Geddes JR (2014) Lithium for prevention of mood episodes in bipolar disorders: systematic review and meta-analysis. Int J Bipolar Disord 2:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah SM, Patel CH, Feng AS, Kollmar R (2013) Lithium alters the morphology of neurites regenerating from cultured adult spiral ganglion neurons. Hear Res 304:137–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan GW, Makmor-Bakry M, Omar MS (2016) Long term use of lithium and factors associated with treatment response among patients with bipolar disorder. Psychiatr Danub 28:146–153

    CAS  PubMed  Google Scholar 

  • Shao L, Golbaz K, Honer WG, Beasley CL (2016) Deficits in axon-associated proteins in prefrontal white matter in bipolar disorder but not schizophrenia. Bipolar Disord 18:342–351

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Javaid JI, Janicak P, Faull K, Comaty J, Davis JM (1989) Plasma and CSF HVA before and after pharmacological treatment. Psychiatry Res 28:97–104

    Article  CAS  PubMed  Google Scholar 

  • Sharp T, Zetterstrom T, Ljungberg T, Ungerstedt U (1987) A direct comparison of amphetamine-induced behaviours and regional brain dopamine release in the rat using intracerebral dialysis. Brain Res 401:322–330

    Article  CAS  PubMed  Google Scholar 

  • Shin EJ, Dang DK, Hwang YG, Tran HQ, Sharma N, Jeong JH, Jang CG, Nah SY, Nabeshima T, Yoneda Y, Cadet JL, Kim HC (2019) Significance of protein kinase C in the neuropsychotoxicity induced by methamphetamine-like psychostimulants. Neurochem Int 124:162–170

    Article  CAS  PubMed  Google Scholar 

  • Shulman KI, Herrmann N, Walker SE (2013) Current place of monoamine oxidase inhibitors in the treatment of depression. CNS Drugs 27:789–797

    Article  CAS  PubMed  Google Scholar 

  • Silverstone T (1985) Dopamine in manic depressive illness: a pharmacological synthesis. J Affect Disord 8:225–231

    Article  CAS  PubMed  Google Scholar 

  • Singh MM (1970) A unifying hypothesis on the biochemical basis of affective disorder. Psychiatr Q 44:706–724

    Article  CAS  PubMed  Google Scholar 

  • Smith MA, Makino S, Kim SY, Kvetnansky R (1995) Stress increases brain-derived neurotropic factor messenger ribonucleic acid in the hypothalamus and pituitary. Endocrinology 136:3743–3750

    Article  CAS  PubMed  Google Scholar 

  • Smythe GA, Brandstater JF, Lazarus L (1979) Acute effects of lithium on central dopamine and serotonin activity reflected by inhibition of prolactin and growth hormone secretion in the rat. Aust J Biol Sci 32:329–334

    Article  CAS  PubMed  Google Scholar 

  • Sporn J, Ghaemi SN, Sambur MR, Rankin MA, Recht J, Sachs GS, Rosenbaum JF, Fava M (2000) Pramipexole augmentation in the treatment of unipolar and bipolar depression: a retrospective chart review. Ann Clin Psychiatry 12:137–140

    Article  CAS  PubMed  Google Scholar 

  • Staunton DA, Magistretti PJ, Shoemaker WJ, Deyo SN, Bloom FE (1982) Effects of chronic lithium treatment on dopamine receptors in the rat corpus striatum. II. No effect on denervation or neuroleptic-induced supersensitivity. Brain Res 232:401–412

    Article  CAS  PubMed  Google Scholar 

  • Sternberg DE, Bowers MB Jr, Heninger GR, Charney DS (1983) Lithium prevents adaptation of brain dopamine systems to haloperidol in schizophrenic patients. Psychiatry Res 10:79–86

    Article  CAS  PubMed  Google Scholar 

  • Strejilevich SA, Teitelbaum J, Martino DJ, Quiroz D, Kapczinski F (2012) Dopamine sudden depletion as a model for mixed depression. Med Hypotheses 78:107–112

    Article  CAS  PubMed  Google Scholar 

  • Sugawara H, Sakamoto K, Harada T, Ishigooka J (2010) Predictors of efficacy in lithium augmentation for treatment-resistant depression. J Affect Disord 125:165–168

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Young LT, Wang JF, Grof P, Turecki G, Rouleau GA, Alda M (2004) Identification of lithium-regulated genes in cultured lymphoblasts of lithium responsive subjects with bipolar disorder. Neuropsychopharmacology 29:799–804

    Article  CAS  PubMed  Google Scholar 

  • Sungur AO, Redecker TM, Andres E, Durichen W, Schwarting RKW, Del Rey A, Wohr M (2018) Reduced efficacy of d-amphetamine and 3,4-methylenedioxymethamphetamine in inducing hyperactivity in mice lacking the postsynaptic scaffolding protein SHANK1. Front Mol Neurosci 11:419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suppes T, Baldessarini RJ, Faedda GL, Tohen M (1991) Risk of recurrence following discontinuation of lithium treatment in bipolar disorder. Arch Gen Psychiatry 48:1082–1088

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Lee D, Koob GF, Vaccarino FJ (1985) Effects of chronic dietary lithium on behavioral indices of dopamine denervation supersensitivity in the rat. J Pharmacol Exp Ther 235:324–329

    CAS  PubMed  Google Scholar 

  • Taler M, Aronovich R, Henry Hornfeld S, Dar S, Sasson E, Weizman A, Hochman E (2021) Regulatory effect of lithium on hippocampal blood-brain barrier integrity in a rat model of depressive-like behavior. Bipolar Disord 23:55–65

    Article  CAS  PubMed  Google Scholar 

  • Tondo L, Hennen J, Baldessarini RJ (2001) Lower suicide risk with long-term lithium treatment in major affective illness: a meta-analysis. Acta Psychiatr Scand 104:163–172

    Article  CAS  PubMed  Google Scholar 

  • Tondo L, Alda M, Bauer M, Bergink V, Grof P, Hajek T, Lewitka U, Licht RW, Manchia M, Muller-Oerlinghausen B, Nielsen RE, Selo M, Simhandl C, Baldessarini RJ, International Group for Studies of L (2019) Clinical use of lithium salts: guide for users and prescribers. Int J Bipolar Disord 7:16

    Article  Google Scholar 

  • Trainor BC (2011) Stress responses and the mesolimbic dopamine system: social contexts and sex differences. Horm Behav 60:457–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueki S, Ogasawara T, Ogawa N (1974) Behavioral effects of lithium chloride. Nihon Yakurigaku Zasshi 70:285–304

    Article  CAS  PubMed  Google Scholar 

  • van Kammen DP, Docherty JP, Marder SR, Rosenblatt JE, Bunney WE Jr (1985) Lithium attenuates the activation-euphoria but not the psychosis induced by d-amphetamine in schizophrenia. Psychopharmacology 87:111–115

    Article  PubMed  Google Scholar 

  • Van Kammen DP, Murphy DL (1975) Attenuation of the euphoriant and activating effects of d- and l-amphetamine by lithium carbonate treatment. Psychopharmacologia 44:215–224

    Article  PubMed  Google Scholar 

  • Vanuk JR, Pace-Schott EF, Bullock A, Esbit S, Dailey NS, Killgore WDS (2022) Morning blue light treatment improves sleep complaints, symptom severity, and retention of fear extinction memory in post-traumatic stress disorder. Front Behav Neurosci 16:886816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vegas-Suarez S, Morera-Herreras T, Requejo C, Lafuente JV, Moratalla R, Miguelez C, Ugedo L (2022) Motor cortico-nigral and cortico-entopeduncular information transmission and its modulation by buspirone in control and after dopaminergic denervation. Front Pharmacol 13:953652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wamsley JK, Gehlert DR, Filloux FM, Dawson TM (1989) Comparison of the distribution of D-1 and D-2 dopamine receptors in the rat brain. J Chem Neuroanat 2:119–137

    CAS  PubMed  Google Scholar 

  • Wegener G, Bandpey Z, Heiberg IL, Mork A, Rosenberg R (2003) Increased extracellular serotonin level in rat hippocampus induced by chronic citalopram is augmented by subchronic lithium: neurochemical and behavioural studies in the rat. Psychopharmacology 166:188–194

    Article  CAS  PubMed  Google Scholar 

  • Wenzel JM, Cheer JF (2018) Endocannabinoid regulation of reward and reinforcement through interaction with dopamine and endogenous opioid signaling. Neuropsychopharmacology 43:103–115

    Article  CAS  PubMed  Google Scholar 

  • Willems JL, Buylaert WA, Lefebvre RA, Bogaert MG (1985) Neuronal dopamine receptors on autonomic ganglia and sympathetic nerves and dopamine receptors in the gastrointestinal system. Pharmacol Rev 37:165–216

    CAS  PubMed  Google Scholar 

  • Wise RA (2009) Roles for nigrostriatal–not just mesocorticolimbic–dopamine in reward and addiction. Trends Neurosci 32:517–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittenborn JR (1974) Deductive approaches to the catecholamine hypothesis of affective disorders. J Nerv Ment Dis 158:320–324

    Article  CAS  PubMed  Google Scholar 

  • Wong DF, Pearlson GD, Tune LE, Young LT, Meltzer CC, Dannals RF, Ravert HT, Reith J, Kuhar MJ, Gjedde A (1997) Quantification of neuroreceptors in the living human brain: IV. Effect of aging and elevations of D2-like receptors in schizophrenia and bipolar illness. J Cereb Blood Flow Metab 17:331–342

    Article  CAS  PubMed  Google Scholar 

  • Woodgett JR (2001) Judging a protein by more than its name: GSK-3. Sci STKE 2001: re12

  • Yorgason JT, Calipari ES, Ferris MJ, Karkhanis AN, Fordahl SC, Weiner JL, Jones SR (2016) Social isolation rearing increases dopamine uptake and psychostimulant potency in the striatum. Neuropharmacology 101:471–479

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura R, Yamada Y, Ueda N, Nakamura J (2000) Changes in plasma monoamine metabolites during acute lithium intoxication. Hum Psychopharmacol 15:357–360

    Article  PubMed  Google Scholar 

  • Youdim MB, Arraf Z (2004) Prevention of MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) dopaminergic neurotoxicity in mice by chronic lithium: involvements of Bcl-2 and Bax. Neuropharmacology 46:1130–1140

    Article  CAS  PubMed  Google Scholar 

  • Young AH, McElroy SL, Olausson B, Paulsson B, I E, Investigators EI, (2014) A randomised, placebo-controlled 52-week trial of continued quetiapine treatment in recently depressed patients with bipolar I and bipolar II disorder. The World Journal of Biological Psychiatry 15:96–112

    Article  PubMed  Google Scholar 

  • Yu F, Wang Z, Tchantchou F, Chiu CT, Zhang Y, Chuang DM (2012) Lithium ameliorates neurodegeneration, suppresses neuroinflammation, and improves behavioral performance in a mouse model of traumatic brain injury. J Neurotrauma 29:362–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarate CA Jr, Payne JL, Singh J, Quiroz JA, Luckenbaugh DA, Denicoff KD, Charney DS, Manji HK (2004) Pramipexole for bipolar II depression: a placebo-controlled proof of concept study. Biol Psychiat 56:54–60

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, da Li W, Yuan BL, Niu LJ, Yang XY, Zhou ZB, Chen XH, Feng X (2016) Lithium treatment prevents apoptosis in neonatal rat hippocampus resulting from sevoflurane exposure. Neurochem Res 41:1993–2005

    Article  CAS  PubMed  Google Scholar 

  • Zohar J, Murphy DL, Crawley JN (1989) Hyperlocomotion induced by dopamine or cholecystokinin + dopamine in the nucleus accumbens is not modified by chronic lithium treatment. Prog Neuropsychopharmacol Biol Psychiatry 13:775–779

    Article  CAS  PubMed  Google Scholar 

  • Zweifel LS, Fadok JP, Argilli E, Garelick MG, Jones GL, Dickerson TM, Allen JM, Mizumori SJ, Bonci A, Palmiter RD (2011) Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety. Nat Neurosci 14:620–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.M., H.F., and Z. G.J.: searching references and writing. M. S.Q.S. and M. R.D.: designing sections, preparing figures, and participating in writing. S.V.: revising the work, designing, writing, and managing the process of drafting. All authors approved the final version.

Corresponding author

Correspondence to Salar Vaseghi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamadian, M., Fallah, H., Ghofrani-Jahromi, Z. et al. Mood and behavior regulation: interaction of lithium and dopaminergic system. Naunyn-Schmiedeberg's Arch Pharmacol 396, 1339–1359 (2023). https://doi.org/10.1007/s00210-023-02437-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02437-1

Keywords

Navigation