Skip to main content

Advertisement

Log in

Repurposing artemisinins as neuroprotective agents: a focus on the PI3k/Akt signalling pathway

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Artemisinin and its derivatives, since their discovery by professor Tu Youyou in the early 1970s, have been the bedrock for the management of malaria globally. Recent works have implied that they could be used to manage other diseases including neurodegenerative disorders. Neurodegenerative disorders mainly occur in the adult population resulting from a progressive deterioration of neuronal structures. These include Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), and Multiple sclerosis (MS), among others. The PI3K/Akt signaling pathway plays a significant role in the central nervous system. It has been investigated extensively for its role in central nervous system physiological processes such as cell survival, autophagy, neuronal proliferation, and synaptic plasticity. Therefore, the modulation of this pathway will be crucial in the management of neurodegenerative disorders. This review seeks to compile most of the research findings on the possible neuroprotective role of artemisinins with special emphasis on their modulatory role on the PI3k/Akt pathway. A literature survey was conducted on PubMed, EBSCO, Web of Science, and EMBASE using the keyword artemisinins, and a total of 10,281 articles were retrieved from 1956 to 2022. Among these, 120 articles were examined using Mesh words like PI3k/Akt, neurodegeneration, and neuroinflammation coupled with boolean operators. Most research revealed that artemisinins could help neurodegenerative disorders by modulating the PI3k/Akt with subsequent inhibition of oxidative stress, neuroinflammation, and apoptosis. This paper illustrates that artemisinins could be repurposed as a neuroprotective agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No data sets were analyzed or generated during this study.

References

Download references

Acknowledgements

The authors are grateful to the Indian Council for Cultural Relation (ICCR) for their financial support to Mr. Richmond Arthur.

Author information

Authors and Affiliations

Authors

Contributions

RA and PK conceived and designed the research. RA wrote the draft manuscript, and PK and USN reviewed the final manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Puneet Kumar.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arthur, R., Navik, U. & Kumar, P. Repurposing artemisinins as neuroprotective agents: a focus on the PI3k/Akt signalling pathway. Naunyn-Schmiedeberg's Arch Pharmacol 396, 593–605 (2023). https://doi.org/10.1007/s00210-022-02350-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-022-02350-z

Keywords

Navigation