Skip to main content
Log in

Dexamethasone sodium phosphate attenuates lipopolysaccharide-induced neuroinflammation in microglia BV2 cells

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Abnormal neuroinflammation ignited by overproduction of chemokines and cytokines via microglial cells can induce the occurrence and development of neurodegenerative disorders. The aim of this study is to investigate the effects of dexamethasone sodium phosphate (Dex-SP) on chemokine and cytokine secretion in lipopolysaccharide (LPS)-activated microglial cells. LPS markedly enhanced the secretion of pro-inflammatory factors such as regulated on activation, normal T cell expressed and secreted (RANTES), transforming growth factor beta-β1 (TGF-β1) and nitric oxide (NO), but decreased the production of macrophage inflammatory protein-1α (MIP-1α) and interleukin 10 (IL-10) in BV-2 microglial cells. Furthermore, LPS increased BV-2 microglial cell migration. However, Dex-SP treatment had the opposite effect, dampening the secretion of RANTES, TGF-β1, and NO, while increasing the production of MIP-1α and IL-10 and blocking migration of LPS-stimulated BV-2 microglial cells. Furthermore, Dex-SP markedly suppressed the LPS-induced degradation of IRAK-1 and IRAK-4, and blocked the activation in TRAF6, p-TAK1, and p-JNK in BV-2 microglial cells. These results showed that Dex-SP inhibited the neuroinflammatory response and migration in LPS-activated BV-2 microglia by inhibiting the secretion of RANTES, TGF-β1, and NO and increasing the production of MIP-1α and IL-10. The molecular mechanism of Dex-SP may be associated with inhibition of TRAF6/TAK-1/JNK signaling pathways mediated by IRAK-1 and IRAK-4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baggiolini M, Dewald B, Moser B (1994) Interleukin-8 and related chemotactic cytokines—CXC and CC chemokines. Adv Immunol 55:97–179

    CAS  PubMed  Google Scholar 

  • Cao Z, Henzel WJ, Gao X (1996a) IRAK: a kinase associated with the interleukin-1 receptor. Science 271:1128–1131

    CAS  PubMed  Google Scholar 

  • Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV (1996b) TRAF6 is a signal transducer for interleukin-1. Nature 383:443–446

    CAS  PubMed  Google Scholar 

  • Chantong B, Kratschmar DV, Nashev LG, Balazs Z, Odermatt A (2012) Mineralocorticoid and glucocorticoid receptors differentially regulate NF-kappaB activity and pro-inflammatory cytokine production in murine BV-2 microglial cells. J Neuroinflammation 9:260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149:2736–2741

    CAS  PubMed  Google Scholar 

  • Chaudhuri A (2004) Adjunctive dexamethasone treatment in acute bacterial meningitis. Lancet Neurol 3:54–62

    CAS  PubMed  Google Scholar 

  • Dai L, Aye Thu C, Liu XY, Xi J, Cheung PC (2012) TAK1, more than just innate immunity. IUBMB Life 64:825–834

    CAS  PubMed  Google Scholar 

  • Duque Ede A, Munhoz CD (2016) The pro-inflammatory effects of glucocorticoids in the brain. Front Endocrinol (Lausanne) 7:78

    Google Scholar 

  • Flannery S, Bowie AG (2010) The interleukin-1 receptor-associated kinases: critical regulators of innate immune signalling. Biochem Pharmacol 80:1981–1991

    CAS  PubMed  Google Scholar 

  • Gay NJ, Gangloff M, O’Neill LA (2011) What the myddosome structure tells us about the initiation of innate immunity. Trends Immunol 32:104–109

    CAS  PubMed  Google Scholar 

  • Gottipati S, Rao NL, Fung-Leung WP (2008) IRAK1: a critical signaling mediator of innate immunity. Cell Signal 20:269–276

    CAS  PubMed  Google Scholar 

  • Hausmann EH, Berman NE, Wang YY, Meara JB, Wood GW, Klein RM (1998) Selective chemokine mRNA expression following brain injury. Brain Res 788:49–59

    CAS  PubMed  Google Scholar 

  • Henn A, Lund S, Hedtjarn M, Schrattenholz A, Porzgen P, Leist M (2009) The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX 26:83–94

    PubMed  Google Scholar 

  • Huang Q, Yang J, Lin Y, Walker C, Cheng J, Liu ZG, Su B (2004) Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3. Nat Immunol 5:98–103

    CAS  PubMed  Google Scholar 

  • Kawagoe T, Sato S, Matsushita K, Kato H, Matsui K, Kumagai Y, Saitoh T, Kawai T, Takeuchi O, Akira S (2008) Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat Immunol 9:684–691

    CAS  PubMed  Google Scholar 

  • Keeler GD, Durdik JM, Stenken JA (2015) Effects of delayed delivery of dexamethasone-21-phosphate via subcutaneous microdialysis implants on macrophage activation in rats. Acta Biomater 23:27–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Joh TH (2006) Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med 38:333–347

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Hernandez LD, Galan JE, Janeway CA Jr, Medzhitov R, Flavell RA (2002) IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110:191–202

    CAS  PubMed  Google Scholar 

  • Kozai TDY, Jaquins-Gerstl AS, Vazquez AL, Michael AC, Cui XT (2016) Dexamethasone retrodialysis attenuates microglial response to implanted probes in vivo. Biomaterials 87:157–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    CAS  PubMed  Google Scholar 

  • Krupinski J, Kumar P, Kumar S, Kaluza J (1996) Increased expression of TGF-beta 1 in brain tissue after ischemic stroke in humans. Stroke 27:852–857

    CAS  PubMed  Google Scholar 

  • Li S, Strelow A, Fontana EJ, Wesche H (2002) IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci U S A 99:5567–5572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim H, Zhu YZ (2006) Role of transforming growth factor-beta in the progression of heart failure. Cell Mol Life Sci 63:2584–2596

    CAS  PubMed  Google Scholar 

  • Lin SC, Lo YC, Wu H (2010) Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465:885–890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes PC (2016) LPS and neuroinflammation: a matter of timing. Inflammopharmacology 24:291–293

    CAS  PubMed  Google Scholar 

  • Lu YC, Yeh WC, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42:145–151

    CAS  PubMed  Google Scholar 

  • Meijer OC, de Lange EC, Breimer DD, de Boer AG, Workel JO, de Kloet ER (1998) Penetration of dexamethasone into brain glucocorticoid targets is enhanced in mdr1A P-glycoprotein knockout mice. Endocrinology 139:1789–1793

    CAS  PubMed  Google Scholar 

  • Michels M, Sonai B, Dal-Pizzol F (2017) Polarization of microglia and its role in bacterial sepsis. J Neuroimmunol 303:90–98

    CAS  PubMed  Google Scholar 

  • Morais JM, Papadimitrakopoulos F, Burgess DJ (2010) Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J 12:188–196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy GM Jr, Jia XC, Song Y, Ong E, Shrivastava R, Bocchini V, Lee YL, Eng LF (1995) Macrophage inflammatory protein 1-alpha mRNA expression in an immortalized microglial cell line and cortical astrocyte cultures. J Neurosci Res 40:755–763

    PubMed  Google Scholar 

  • Nicoletti F, Di Marco R, Patti F, Reggio E, Nicoletti A, Zaccone P, Stivala F, Meroni PL, Reggio A (1998) Blood levels of transforming growth factor-beta 1 (TGF-beta1) are elevated in both relapsing remitting and chronic progressive multiple sclerosis (MS) patients and are further augmented by treatment with interferon-beta 1b (IFN-beta1b). Clin Exp Immunol 113:96–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papoff P, Christensen RD, Harcum J, Li Y (1998) In vitro effect of dexamethasone phosphate on hematopoietic progenitor cells in preterm infants. Arch Dis Child Fetal Neonatal Ed 78:F67–F69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park MJ, Park HS, You MJ, Yoo J, Kim SH, Kwon MS (2019) Dexamethasone induces a specific form of ramified dysfunctional microglia. Mol Neurobiol 56:1421–1436

    CAS  PubMed  Google Scholar 

  • Porta C, Rimoldi M, Raes G, Brys L, Ghezzi P, Di Liberto D, Dieli F, Ghisletti S, Natoli G, De Baetselier P, Mantovani A, Sica A (2009) Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB. Proc Natl Acad Sci U S A 106:14978–14983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu D, Li XN (2015) Pioglitazone inhibits the secretion of proinflammatory cytokines and chemokines in astrocytes stimulated with lipopolysaccharide. Int J Clin Pharmacol Ther 53:746–752

    CAS  PubMed  Google Scholar 

  • Rahimifard M, Maqbool F, Moeini-Nodeh S, Niaz K, Abdollahi M, Braidy N, Nabavi SM, Nabavi SF (2017) Targeting the TLR4 signaling pathway by polyphenols: a novel therapeutic strategy for neuroinflammation. Ageing Res Rev 36:11–19

    CAS  PubMed  Google Scholar 

  • Rohdewald P, Mollmann H, Barth J, Rehder J, Derendorf H (1987) Pharmacokinetics of dexamethasone and its phosphate ester. Biopharm Drug Dispos 8:205–212

    CAS  PubMed  Google Scholar 

  • Sargent JM, Taylor CG (1989) Appraisal of the MTT assay as a rapid test of chemosensitivity in acute myeloid leukaemia. Br J Cancer 60:206–210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saukkonen K, Sande S, Cioffe C, Wolpe S, Sherry B, Cerami A, Tuomanen E (1990) The role of cytokines in the generation of inflammation and tissue damage in experimental gram-positive meningitis. J Exp Med 171:439–448

    CAS  PubMed  Google Scholar 

  • Schoneveld OJ, Gaemers IC, Lamers WH (2004) Mechanisms of glucocorticoid signalling. Biochim Biophys Acta 1680:114–128

    CAS  PubMed  Google Scholar 

  • Schweingruber N, Reichardt SD, Luhder F, Reichardt HM (2012) Mechanisms of glucocorticoids in the control of neuroinflammation. J Neuroendocrinol 24:174–182

    CAS  PubMed  Google Scholar 

  • Siegal T, Siegal T, Shohami E, Shapira Y (1988) Comparison of soluble dexamethasone sodium phosphate with free dexamethasone and indomethacin in treatment of experimental neoplastic spinal cord compression. Spine (Phila Pa 1976) 13:1171–1176

    CAS  Google Scholar 

  • Song KW, Talamas FX, Suttmann RT, Olson PS, Barnett JW, Lee SW, Thompson KD, Jin S, Hekmat-Nejad M, Cai TZ, Manning AM, Hill RJ, Wong BR (2009) The kinase activities of interleukin-1 receptor associated kinase (IRAK)-1 and 4 are redundant in the control of inflammatory cytokine expression in human cells. Mol Immunol 46:1458–1466

    CAS  PubMed  Google Scholar 

  • Taka E, Mazzio EA, Goodman CB, Redmon N, Flores-Rozas H, Reams R, Darling-Reed S, Soliman KF (2015) Anti-inflammatory effects of thymoquinone in activated BV-2 microglial cells. J Neuroimmunol 286:5–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Town T, Laouar Y, Pittenger C, Mori T, Szekely CA, Tan J, Duman RS, Flavell RA (2008) Blocking TGF-beta-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat Med 14:681–687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vallejo-Heligon SG, Klitzman B, Reichert WM (2014) Characterization of porous, dexamethasone-releasing polyurethane coatings for glucose sensors. Acta Biomater 10:4629–4638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker DG, Lue LF (2005) Investigations with cultured human microglia on pathogenic mechanisms of Alzheimer’s disease and other neurodegenerative diseases. J Neurosci Res 81:412–425

    CAS  PubMed  Google Scholar 

  • Yu AC, Neil SE, Quandt JA (2017) High yield primary microglial cultures using granulocyte macrophage-colony stimulating factor from embryonic murine cerebral cortical tissue. J Neuroimmunol 307:53–62

    CAS  PubMed  Google Scholar 

  • Zhang Q, Lu Y, Bian H, Guo L, Zhu H (2017) Activation of the alpha7 nicotinic receptor promotes lipopolysaccharide-induced conversion of M1 microglia to M2. Am J Transl Res 9:971–985

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Ling EA, Dheen ST (2007) Dexamethasone suppresses monocyte chemoattractant protein-1 production via mitogen activated protein kinase phosphatase-1 dependent inhibition of Jun N-terminal kinase and p38 mitogen-activated protein kinase in activated rat microglia. J Neurochem 102:667–678

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Foundation of Shanghai University of Medicine & Health Sciences (Talent Introduction Project 2018).

Author information

Authors and Affiliations

Authors

Contributions

Bin Hui, Liping Zhang, and Qinhua Zhou designed the experiments; Bin Hui, Xin Yao, Qinhua Zhou, and Liping Zhang performed parts of the experiments; Bin Hui, Qinhua Zhou, and Liping Zhang analyzed the data; Bin Hui, Qinhua Zhou, and Liping Zhang wrote the manuscript.

Corresponding authors

Correspondence to Liping Zhang or Qinhua Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(TIFF 9.37 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, B., Yao, X., Zhang, L. et al. Dexamethasone sodium phosphate attenuates lipopolysaccharide-induced neuroinflammation in microglia BV2 cells. Naunyn-Schmiedeberg's Arch Pharmacol 393, 1761–1768 (2020). https://doi.org/10.1007/s00210-019-01775-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-019-01775-3

Keywords

Navigation