Skip to main content

Advertisement

Log in

Triggering of eryptosis, the suicidal erythrocyte death, by phenoxodiol

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

A Correction to this article was published on 23 July 2019

This article has been updated

Abstract

Phenoxodiol is used for the treatment of malignancy. The substance is effective by triggering suicidal tumor cell death or apoptosis. At least in theory, phenoxodiol could similarly stimulate suicidal erythrocyte death or eryptosis. Eryptosis is characterized by cell shrinkage and breakdown of cell membrane asymmetry with phosphatidylserine translocation to the erythrocyte surface. Signaling of eryptosis includes increase of cytosolic Ca2+ activity ([Ca2+]i), formation of reactive oxygen species (ROS), and increase of ceramide abundance at the cell surface. The present study explored whether phenoxodiol induces eryptosis and whether it modifies Ca2+ entry, ROS, and ceramide. Using flow cytometry, phosphatidylserine exposure at the cell surface was quantified from annexin V binding, cell volume from forward scatter, [Ca2+]i from Fluo3 fluorescence, ROS from DCFDA-dependent fluorescence, and ceramide abundance utilizing specific antibodies. A 48-h exposure of human erythrocytes to phenoxodiol (100 μg/ml [416 μM]) significantly increased the percentage of annexin V binding cells, significantly decreased average forward scatter and Fluo3 fluorescence and significantly increased ceramide abundance, but did not significantly modify DCFDA fluorescence. The effect of phenoxodiol on annexin V binding tended to decrease following removal of extracellular Ca2+, an effect, however, not reaching statistical significance. In conclusion, phenoxodiol triggers eryptosis, an effect paralleled by increase of ceramide abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 23 July 2019

    The original version of this article contains several mistakes due to the missed corrections:

References

  • Abed M, Towhid ST, Mia S, Pakladok T, Alesutan I, Borst O, Gawaz M, Gulbins E, Lang F (2012) Sphingomyelinase-induced adhesion of eryptotic erythrocytes to endothelial cells. Am J Physiol Cell Physiol 303:C991–C999

    Article  CAS  PubMed  Google Scholar 

  • Aguero MF, Facchinetti MM, Sheleg Z, Senderowicz AM (2005) Phenoxodiol, a novel isoflavone, induces G1 arrest by specific loss in cyclin-dependent kinase 2 activity by p53-independent induction of p21WAF1/CIP1. Cancer Res 65:3364–3373

    Article  CAS  PubMed  Google Scholar 

  • Aguero MF, Venero M, Brown DM, Smulson ME, Espinoza LA (2010) Phenoxodiol inhibits growth of metastatic prostate cancer cells. Prostate 70:1211–1221

    Article  CAS  PubMed  Google Scholar 

  • Alvero AB, O’Malley D, Brown D, Kelly G, Garg M, Chen W, Rutherford T, Mor G (2006) Molecular mechanism of phenoxodiol-induced apoptosis in ovarian carcinoma cells. Cancer 106:599–608

    Article  CAS  PubMed  Google Scholar 

  • Alvero AB, Brown D, Montagna M, Matthews M, Mor G (2007) Phenoxodiol-topotecan co-administration exhibit significant anti-tumor activity without major adverse side effects. Cancer Biol Ther 6:612–617

    Article  CAS  PubMed  Google Scholar 

  • Alvero AB, Kelly M, Rossi P, Leiser A, Brown D, Rutherford T, Mor G (2008) Anti-tumor activity of phenoxodiol: from bench to clinic. Future Oncol 4:475–482

    Article  CAS  PubMed  Google Scholar 

  • Bissinger R, Bhuyan AAM, Qadri SM, Lang F (2019) Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J 286:826–854

    Article  CAS  PubMed  Google Scholar 

  • Briglia M, Rossi MA, Faggio C (2017) Eryptosis: ally or enemy. Curr Med Chem 24:937–942

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Cass SL, Kutty SK, Yee EM, Chan DS, Gardner CR, Vittorio O, Pasquier E, Black DS, Kumar N (2015) Synthesis, biological evaluation and structure-activity relationship studies of isoflavene based Mannich bases with potent anti-cancer activity. Bioorg Med Chem Lett 25:5377–5383

    Article  CAS  PubMed  Google Scholar 

  • Choueiri TK, Mekhail T, Hutson TE, Ganapathi R, Kelly GE, Bukowski RM (2006a) Phase I trial of phenoxodiol delivered by continuous intravenous infusion in patients with solid cancer. Ann Oncol 17:860–865

    Article  CAS  PubMed  Google Scholar 

  • Choueiri TK, Wesolowski R, Mekhail TM (2006b) Phenoxodiol: isoflavone analog with antineoplastic activity. Curr Oncol Rep 8:104–107

    Article  CAS  PubMed  Google Scholar 

  • De Luca T, Bosneaga E, Morre DM, Morre DJ (2008) Downstream targets of altered sphingolipid metabolism in response to inhibition of ENOX2 by phenoxodiol. Biofactors 34:253–260

    Article  PubMed  Google Scholar 

  • De Luca T, Morre DM, Morre DJ (2010) Reciprocal relationship between cytosolic NADH and ENOX2 inhibition triggers sphingolipid-induced apoptosis in HeLa cells. J Cell Biochem 110:1504–1511

    Article  CAS  PubMed  Google Scholar 

  • de Souza PL, Russell PJ, Kearsley JH, Howes LG (2010) Clinical pharmacology of isoflavones and its relevance for potential prevention of prostate cancer. Nutr Rev 68:542–555

    Article  PubMed  Google Scholar 

  • Foller M, Bobbala D, Koka S, Huber SM, Gulbins E, Lang F (2009) Suicide for survival--death of infected erythrocytes as a host mechanism to survive malaria. Cell Physiol Biochem 24:133–140

    Article  CAS  PubMed  Google Scholar 

  • Gamble JR, Xia P, Hahn CN, Drew JJ, Drogemuller CJ, Brown D, Vadas MA (2006) Phenoxodiol, an experimental anticancer drug, shows potent antiangiogenic properties in addition to its antitumour effects. Int J Cancer 118:2412–2420

    Article  CAS  PubMed  Google Scholar 

  • Herst PM, Petersen T, Jerram P, Baty J, Berridge MV (2007) The antiproliferative effects of phenoxodiol are associated with inhibition of plasma membrane electron transport in tumor cell lines and primary immune cells. Biochem Pharmacol 74:1587–1595

    Article  CAS  PubMed  Google Scholar 

  • Herst PM, Davis JE, Neeson P, Berridge MV, Ritchie DS (2009) The anti-cancer drug, phenoxodiol, kills primary myeloid and lymphoid leukemic blasts and rapidly proliferating T cells. Haematologica 94:928–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isono M, Sato A, Asano T, Okubo K, Asano T (2018) Evaluation of therapeutic potential of phenoxodiol, a novel isoflavone analog, in renal cancer cells. Anticancer Res 38:5709–5716

    Article  CAS  PubMed  Google Scholar 

  • Kamsteeg M, Rutherford T, Sapi E, Hanczaruk B, Shahabi S, Flick M, Brown D, Mor G (2003) Phenoxodiol--an isoflavone analog--induces apoptosis in chemoresistant ovarian cancer cells. Oncogene 22:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Kluger HM, McCarthy MM, Alvero AB, Sznol M, Ariyan S, Camp RL, Rimm DL, Mor G (2007) The X-linked inhibitor of apoptosis protein (XIAP) is up-regulated in metastatic melanoma, and XIAP cleavage by Phenoxodiol is associated with carboplatin sensitization. J Transl Med 5:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang PA, Kaiser S, Myssina S, Wieder T, Lang F, Huber SM (2003) Role of Ca2+-activated K+ channels in human erythrocyte apoptosis. Am J Physiol Cell Physiol 285:C1553–C1560

    Article  CAS  PubMed  Google Scholar 

  • Lang PA, Kempe DS, Myssina S, Tanneur V, Birka C, Laufer S, Lang F, Wieder T, Huber SM (2005) PGE(2) in the regulation of programmed erythrocyte death. Cell Death Differ 12:415–428

    Article  CAS  PubMed  Google Scholar 

  • Lang E, Modicano P, Arnold M, Bissinger R, Faggio C, Abed M, Lang F (2013) Effect of thioridazine on erythrocytes. Toxins (Basel) 5:1918–1931

    Article  CAS  Google Scholar 

  • Lang E, Bissinger R, Gulbins E, Lang F (2015) Ceramide in the regulation of eryptosis, the suicidal erythrocyte death. Apoptosis 20:758–767

    Article  CAS  PubMed  Google Scholar 

  • Lang F, Bissinger R, Abed M, Artunc F (2017) Eryptosis - the neglected cause of anemia in end stage renal disease. Kidney Blood Press Res 42:749–760

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Huang X, Huang Z, Feng J (2014) Phenoxodiol enhances the antitumor activity of gemcitabine in gallbladder cancer through suppressing Akt/mTOR pathway. Cell Biochem Biophys 70:1337–1342

    Article  CAS  PubMed  Google Scholar 

  • Mahoney S, Arfuso F, Rogers P, Hisheh S, Brown D, Millward M, Dharmarajan A (2012) Cytotoxic effects of the novel isoflavone, phenoxodiol, on prostate cancer cell lines. J Biosci 37:73–84

    Article  CAS  PubMed  Google Scholar 

  • Mahoney S, Arfuso F, Millward M, Dharmarajan A (2014) The effects of phenoxodiol on the cell cycle of prostate cancer cell lines. Cancer Cell Int 14:110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McPherson RA, Galettis PT, de Souza PL (2009) Enhancement of the activity of phenoxodiol by cisplatin in prostate cancer cells. Br J Cancer 100:649–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mischitelli M, Jemaa M, Almasry M, Faggio C, Lang F (2016a) Ca2+ entry, oxidative stress, ceramide and suicidal erythrocyte death following diosgenin treatment. Cell Physiol Biochem 39:1626–1637

    Article  CAS  PubMed  Google Scholar 

  • Mischitelli M, Jemaa M, Almasry M, Faggio C, Lang F (2016b) Triggering of erythrocyte cell membrane scrambling by emodin. Cell Physiol Biochem 40:91–103

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto M, Takano M, Aoyama T, Soyama H, Ishibashi H, Kato K, Iwahashi H, Takasaki K, Kuwahara M, Matuura H, Sakamoto T, Yoshikawa T, Furuya K (2018) Phenoxodiol increases cisplatin sensitivity in ovarian clear cancer cells through XIAP down-regulation and autophagy inhibition. Anticancer Res 38:301–306

    CAS  PubMed  Google Scholar 

  • Mor G, Fu HH, Alvero AB (2006) Phenoxodiol, a novel approach for the treatment of ovarian cancer. Curr Opin Investig Drugs 7:542–548

    CAS  PubMed  Google Scholar 

  • Mor G, Montagna MK, Alvero AB (2008) Modulation of apoptosis to reverse chemoresistance. Methods Mol Biol 414:1–12

    CAS  PubMed  Google Scholar 

  • Morre DJ, Chueh PJ, Yagiz K, Balicki A, Kim C, Morre DM (2007) ECTO-NOX target for the anticancer isoflavene phenoxodiol. Oncol Res 16:299–312

    Article  PubMed  Google Scholar 

  • Pretorius E, du Plooy JN, Bester J (2016) A comprehensive review on eryptosis. Cell Physiol Biochem 39:1977–2000

    Article  CAS  PubMed  Google Scholar 

  • Saif MW, Tytler E, Lansigan F, Brown DM, Husband AJ (2009) Flavonoids, phenoxodiol, and a novel agent, triphendiol, for the treatment of pancreaticobiliary cancers. Expert Opin Investig Drugs 18:469–479

    Article  CAS  PubMed  Google Scholar 

  • Sapi E, Alvero AB, Chen W, O’Malley D, Hao XY, Dwipoyono B, Garg M, Kamsteeg M, Rutherford T, Mor G (2004) Resistance of ovarian carcinoma cells to docetaxel is XIAP dependent and reversible by phenoxodiol. Oncol Res 14:567–578

    Article  CAS  PubMed  Google Scholar 

  • Silasi DA, Alvero AB, Rutherford TJ, Brown D, Mor G (2009) Phenoxodiol: pharmacology and clinical experience in cancer monotherapy and in combination with chemotherapeutic drugs. Expert Opin Pharmacother 10:1059–1067

    Article  CAS  PubMed  Google Scholar 

  • Straszewski-Chavez SL, Abrahams VM, Funai EF, Mor G (2004) X-Linked inhibitor of apoptosis (XIAP) confers human trophoblast cell resistance to Fas-mediated apoptosis. Mol Hum Reprod 10:33–41

    Article  CAS  PubMed  Google Scholar 

  • Wu LY, De Luca T, Watanabe T, Morre DM, Morre DJ (2011) Metabolite modulation of HeLa cell response to ENOX2 inhibitors EGCG and phenoxodiol. Biochim Biophys Acta 1810:784–789

    Article  CAS  PubMed  Google Scholar 

  • Yagiz K, Wu LY, Kuntz CP, James Morre D, Morre DM (2007) Mouse embryonic fibroblast cells from transgenic mice overexpressing tNOX exhibit an altered growth and drug response phenotype. J Cell Biochem 101:295–306

    Article  CAS  PubMed  Google Scholar 

  • Yao C, Wu S, Li D, Ding H, Wang Z, Yang Y, Yan S, Gu Z (2012) Co-administration phenoxodiol with doxorubicin synergistically inhibit the activity of sphingosine kinase-1 (SphK1), a potential oncogene of osteosarcoma, to suppress osteosarcoma cell growth both in vivo and in vitro. Mol Oncol 6:392–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu F, Watts RN, Zhang XD, Borrow JM, Hersey P (2006) Involvement of BH3-only proapoptotic proteins in mitochondrial-dependent phenoxodiol-induced apoptosis of human melanoma cells. Anti-Cancer Drugs 17:1151–1161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the meticulous preparation of the manuscript by Lejla Subasic.

Funding

The study was supported by the Deutsche Forschungsgemeinschaft, DFG grant “Gi proteins and platelets” (NU 53/13-1) and Deutscher Akademischer Austaauschdienst (DAAD).

Author information

Authors and Affiliations

Authors

Contributions

BN, CF, and FL conceived and designed research. MF and AMB conducted experiments and analyzed data. FL wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Florian Lang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fink, M., Bhuyan, A.A.M., Nürnberg, B. et al. Triggering of eryptosis, the suicidal erythrocyte death, by phenoxodiol. Naunyn-Schmiedeberg's Arch Pharmacol 392, 1311–1318 (2019). https://doi.org/10.1007/s00210-019-01681-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-019-01681-8

Keywords

Navigation