Skip to main content
Log in

The Chebyshev–Frobenius homomorphism for stated skein modules of 3-manifolds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study the stated skein modules of marked \(3-\)manifolds. We generalize the splitting homomorphism for stated skein algebras of surfaces to a splitting homomorphism for stated skein modules of \(3-\)manifolds. We show that there exists a Chebyshev–Frobenius homomorphism for the stated skein modules of 3-manifolds which extends the Chebyshev homomorphism of the skein algebras of unmarked surfaces originally constructed by Bonahon and Wong. Additionally, we show that the Chebyshev–Frobenius map commutes with the splitting homomorphism. This is then used to show that in the case of the stated skein algebra of a surface, the Chebyshev–Frobenius map is the unique extension of the dual Frobenius map (in the sense of Lusztig) of \({\mathcal {O}}_{q^2}(SL(2))\) through the triangular decomposition afforded by an ideal triangulation of the surface. In particular, this gives a skein theoretic construction of the Hopf dual of Lusztig’s Frobenius homomorphism. A second conceptual framework is given, which shows that the Chebyshev–Frobenius homomorphism for the stated skein algebra of a surface is the unique restriction of the Frobenius homomorphism of quantum tori through the quantum trace map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Baseilhac, S., Roche, P.: Unrestricted quantum moduli algebras, I: The case of punctured spheres, preprint arXiv:1912.02440

  2. Bonahon, F.: Miraculous cancellations for quantum SL2, Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6. Tome 28(3), 523–557 (2019)

    Google Scholar 

  3. Bonahon, F., Wong, H.: Quantum traces for representations of surface groups in SL2(C). Geom. Topol. 15(3), 1569–1615 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bonahon, F., Wong, H.: Representations of the Kauffman skein algebra I: invariants and miraculous cancellations. Invent. Math. 204(1), 195–243 (2016)

    Article  MathSciNet  Google Scholar 

  5. Bonahon, F., Wong, H.: Representations of the Kauffman bracket skein algebra II: Punctured surfaces. Algebr. Geom. Topol. 17(6), 3399–3434 (2017)

    Article  MathSciNet  Google Scholar 

  6. Bonahon, F., Wong, H.: Representations of the Kauffman bracket skein algebra III: closed surfaces and naturality. Quantum Topol. 10(2), 325–398 (2019)

    Article  MathSciNet  Google Scholar 

  7. Chari, V., Pressley, A.: A guide to quantum groups. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  8. Chekhov, L., Fock, V.: Quantum Teichmüller spaces (Russian) Teoret. Mat. Fiz. 120(3), 511–528 (1999). translation in Theoret. and Math. Phys. 120(3), 1245–1259 (1999)

  9. F. Costantino and T.T.Q. Lê, Stated skein algebras of surfaces. To appear in Journal of EMS, arXiv:1907.11400 [math.GT], (2019)

  10. Costantino, F., Lê, T.T.Q.: In preparation

  11. De Concini, C., Lyubashenko, V.: Quantum Function Algebra at Roots of 1. Adv. Math. 108(2), 205–262 (1994)

    Article  MathSciNet  Google Scholar 

  12. Frohman, C., Kania-Bartoszynska, J., Lê, T.T.Q.: In preperation

  13. Frohman, C., Gelca, R.: Skein modules and the noncommutative torus. Trans. Am. Math. Soc. 352(10), 4877–4888 (2000)

    Article  MathSciNet  Google Scholar 

  14. Frohman, C., Kania-Bartoszynska, J., Lê, T.T.Q.: Unicity for Representations of the Kauffman bracket skein algebra. Invent. Math. 215(2), 609–650 (2019)

    Article  MathSciNet  Google Scholar 

  15. Frohman, C., Kania-Bartoszynska, J., Lê, T.T.Q.: Dimension and Trace of the Kauffman Bracket Skein Algebra. Trans. Am. Math. Soc. Ser. B 8, 510–547 (2021)

    Article  MathSciNet  Google Scholar 

  16. Ganev, I., Jordan, D., Safronov, P.: The quantum Frobenius for character varieties and multiplictative quiver varieties, preprint arXiv:1901.11450

  17. Kashiwara, M.: On crystal bases of the q-analogue of universal enveloping algebras. Duke Math. J. 63(2), 465–516 (1991)

    Article  MathSciNet  Google Scholar 

  18. Kassel, C.: Quantum groups, Springer Verlag, New York, 1995, Graduate Texts in Mathematics, No. 155

  19. Kauffman, L.: States models and the Jones polynomial. Topology 26, 395–407 (1987)

    Article  MathSciNet  Google Scholar 

  20. Korinman, J., Quesney, A.: Classical shadows of stated skein representations at roots of unity, arXiv:1905.03441 [math.GT] (2019)

  21. Lê T.T.Q., Yu, T.: Quantum traces and embeddings of stated skein algebras into quantum tori, arXiv:2012.15272 [math.GT]

  22. Lê, T.T.Q.: Quantum Teichmüller spaces and quantum trace map. J. Inst. Math. Jussieu 1–43 (2017). https://doi.org/10.1017/S1474748017000068

  23. Lê, T.T.Q.: On Kauffman bracket skein modules at roots of unity. Alg. Geol. Top. 15(2), 1093–1117 (2015)

    Article  MathSciNet  Google Scholar 

  24. Lê, T.T.Q.: Triangular Decomposition of Skein Algebras. Quantum Topol. 9(3), 591–632 (2018)

    Article  MathSciNet  Google Scholar 

  25. Lê, T.T.Q., Paprocki, J.: On Kauffman bracket skein modules Of marked 3-manifolds and the Chebyshev-Frobenius homomorphism. Algebra Geom. Topol. 19(7), 3453–3509 (2019)

    Article  MathSciNet  Google Scholar 

  26. Lê, T.T.Q., Yu, T.: Stated skein modules of marked 3-manifolds/surfaces, a survey. Acta Math. Vietnam. 46(2), 265–287 (2021)

    Article  MathSciNet  Google Scholar 

  27. Lusztig, G.: Introduction to quantum groups, Progress in Mathematics, 110. Birkhäuser, (1993)

  28. Lusztig, G.: Quantum Groups at Roots of \(1\). Geom. Dedicata 35(1–3), 89–113 (1990)

    MathSciNet  MATH  Google Scholar 

  29. Majid, S.: Foundations of quantum group theory, Cambridge University Press (1995) 1-640 pp. (2nd edn.) 2000

  30. Muller, G.: Skein algebras and cluster algebras of marked surfaces, Quan. Topol., to appear. (2012)

  31. Parshall, B., Wang, J.P.: Quantum Linear Groups. Mem. Am. Math. Soc. 439, (1991)

  32. Penner, R.C.: Decorated Teichmüller Theory, with a foreward by Yuri I. Manin, QGM Master Class Series, European Mathematical Society, Zürich, (2012)

  33. Przytycki, J.: Fundamentals of Kauffman bracket skein modules. Kobe J. Math. 16, 45–66 (1999)

    MathSciNet  MATH  Google Scholar 

  34. Turaev, V.: Conway and Kauffman modules of a solid torus. J. Soviet. Math. 52, 2799–2805 (1990)

    Article  MathSciNet  Google Scholar 

  35. Turaev, V.: Skein quantization of Poisson algebras of loops on surfaces. Ann. Sci. Sc. Norm. Sup. (4) 24(6), 635–704 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank F. Bonahon, C. Frohman, J. Kania-Bartozynska, A. Kricker, G. Masbaum, G. Muller, A. Sikora, D. Thurston. The second author would like to thank the CIMI Excellence Laboratory, Toulouse, France, for inviting him on a Excellence Chair during the period of January – July 2017 when part of this work was done. The second author is supported in part by NSF grant DMS 1811114. The first author is supported in part by NSF Grant DMS-1745583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wade Bloomquist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Divided powers and the Hopf pairing

A Divided powers and the Hopf pairing

In this appendix we provide the computations required to show that \(\varPhi _\omega \) is the Hopf dual of the Frobenius homomorphism.

Note that the Hopf pairing

$$\begin{aligned} \langle , \rangle _{q^2}:U_{q^2}({\mathfrak {sl}}_2) \otimes {\mathcal {O}}_{q^2}(SL(2))\rightarrow {\mathbb {Q}}(q^{1/2}), \end{aligned}$$

is defined on generators as

$$\begin{aligned}&\left\langle \left( \begin{array}{cc} a &{} b\\ c &{} d \end{array}\right) ,K\right\rangle =\left( \begin{array}{cc} q^2 &{} 0\\ 0 &{} q^{-2} \end{array}\right) \\&\left\langle \left( \begin{array}{cc} a &{} b\\ c &{} d \end{array}\right) ,E\right\rangle =\left( \begin{array}{cc} 0 &{} 1\\ 0 &{} 0 \end{array}\right) \\&\left\langle \left( \begin{array}{cc} a &{} b\\ c &{} d \end{array}\right) ,F\right\rangle =\left( \begin{array}{cc} 0 &{} 0\\ 1 &{} 0 \end{array}\right) \end{aligned}$$

This non-degenerate Hopf pairing \(\langle , \rangle \) restricted to \(U^L_{q^2}({\mathfrak {sl}}_2)\) is integral, meaning

$$\begin{aligned} U^L_{q^2}({\mathfrak {sl}}_2)\otimes {\mathcal {O}}_{q^2} (SL(2))\rightarrow {\mathbb {Z}}[q^{\pm 1/2}]. \end{aligned}$$

Proposition 5

With the notation of Sect. 6, we have for any m and any p.

$$\begin{aligned} \left\langle \left( \begin{array}{cc} a^m &{} b^m \\ c^m &{} d^m \end{array}\right) , K\right\rangle _{q^2} =\left( \begin{array}{cc} q^{2m} &{} 0 \\ 0 &{} q^{-2m} \end{array}\right) \end{aligned}$$
(49)

and

$$\begin{aligned} \left\langle \left( \begin{array}{cc} a^m &{} b^m \\ c^m &{} d^m \end{array}\right) , E^{(p)}\right\rangle _{q^2} =\left( \begin{array}{cc} \delta _{0,p} &{} \delta _{m,p} \\ 0 &{} \delta _{0,p} \end{array}\right) \end{aligned}$$
(50)

and

$$\begin{aligned} \left\langle \left( \begin{array}{cc} a^m &{} b^m \\ c^m &{} d^m \end{array}\right) , F^{(p)}\right\rangle _{q^2} =\left( \begin{array}{cc} \delta _{0,p} &{} 0 \\ \delta _{m,p} &{} \delta _{0,p} \end{array}\right) \end{aligned}$$
(51)

Proof

This result follows from a direct computation based induction using the coproduct in \(U_{q^2}({\mathfrak {sl}}_{{\mathfrak {2}}})\). \(\square \)

Proposition 6

Let \(\omega \) be a root of unity with \(N=\mathrm{ord}(\omega ^8)\) and \(\eta =\omega ^{N^2}\). We have that the Frobenius map f and the map \(\varPhi _\omega \) are dual with respect to the Hopf pairings between \({\mathcal {O}}_{\eta ^4}(SL(2))\) and \(U_{\eta ^4}({\mathfrak {sl}}_2)\) and between \({\mathcal {O}}_{\omega ^4}(SL(2))\) and \(U_{\omega ^4}({\mathfrak {sl}}_2)\), meaning the following diagram commutes:

Proof

This is a direct computation on the generators of the algebras. We will use matrix notation to indicate the map applied to each entry of the matrix.

$$\begin{aligned}&\left\langle \left( \begin{array}{cc} a &{} b \\ c &{} d \end{array}\right) , (-1)^{N+1} K\right\rangle _{\eta ^4}\\&=\left( \begin{array}{cc} (-1)^{N+1}\eta ^{4} &{} 0 \\ 0 &{} (-1)^{N+1}\eta ^{-4} \end{array}\right) =\left( \begin{array}{cc} \omega ^{-4N^2+4N}\omega ^{4N^2} &{} 0 \\ 0 &{} \omega ^{4N^2-4N}\omega ^{-4N^2} \end{array}\right) \\&=\left( \begin{array}{cc} \omega ^{4N} &{} 0 \\ 0 &{} \omega ^{-4N} \end{array}\right) =\left\langle \left( \begin{array}{cc} a^N &{} b^N \\ c^N &{} d^N \end{array}\right) , K\right\rangle _{\omega ^4}\\ \end{aligned}$$

Where the first equality uses the definition of the pairing, the second equality uses that \(\eta =\omega ^{N^2}\), and the last equality comes from Equation 49 with \(m=N\).

$$\begin{aligned}&\left\langle \left( \begin{array}{cc} a &{} b \\ c &{} d \end{array}\right) , 0\right\rangle _{\eta ^4} =\left( \begin{array}{cc} 0 &{} 0 \\ 0 &{} 0 \end{array}\right) =\left\langle \left( \begin{array}{cc} a^N &{} b^N \\ c^N &{} d^N \end{array}\right) , E\right\rangle _{\omega ^4} \end{aligned}$$

Where the first equality uses the definition of the pairing and the second equality uses Equation 50 with \(m=N\) and \(p=1\).

$$\begin{aligned}&\left\langle \left( \begin{array}{cc} a &{} b \\ c &{} d \end{array}\right) , 0\right\rangle _{\eta ^4} =\left( \begin{array}{cc} 0 &{} 0 \\ 0 &{} 0 \end{array}\right) =\left\langle \left( \begin{array}{cc} a^N &{} b^N \\ c^N &{} d^N \end{array}\right) , F\right\rangle _{\omega ^4} \end{aligned}$$

Where the first equality uses the definition of the pairing and the second equality uses Equation 51 with \(m=N\) and \(p=1\).

$$\begin{aligned}&\left\langle \left( \begin{array}{cc} a &{} b \\ c &{} d \end{array}\right) , E\right\rangle _{\eta ^4} =\left( \begin{array}{cc} 0 &{} 1 \\ 0 &{} 0 \end{array}\right) =\left\langle \left( \begin{array}{cc} a^N &{} b^N \\ c^N &{} d^N \end{array}\right) , E^{(N)}\right\rangle _{\omega ^4} \end{aligned}$$

Where the first equality uses the definition of the pairing and the second equality uses Equation 50 with \(m=N\) and \(p=N\).

$$\begin{aligned}&\left\langle \left( \begin{array}{cc} a &{} b \\ c &{} d \end{array}\right) , F\right\rangle _{\eta ^4} =\left( \begin{array}{cc} 0 &{} 0 \\ 1 &{} 0 \end{array}\right) =\left\langle \left( \begin{array}{cc} a^N &{} b^N \\ c^N &{} d^N \end{array}\right) , F^{(N)}\right\rangle _{\omega ^4}. \end{aligned}$$

Where the first equality uses the definition of the pairing and the second equality uses Equation 51 with \(m=N\) and \(p=N\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloomquist, W., Lê, T.T.Q. The Chebyshev–Frobenius homomorphism for stated skein modules of 3-manifolds. Math. Z. 301, 1063–1105 (2022). https://doi.org/10.1007/s00209-021-02904-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02904-6

Keywords

Navigation