Skip to main content
Log in

Quantum traces and embeddings of stated skein algebras into quantum tori

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

The stated skein algebra of a punctured bordered surface (or equivalently, a marked surface) is a generalization of the well-known Kauffman bracket skein algebra of unmarked surfaces and can be considered as an extension of the quantum special linear group \({\mathcal {O}}_{q^2}(SL_2)\) from a bigon to general surfaces. We show that the stated skein algebra of a punctured bordered surface with non-empty boundary can be embedded into quantum tori in two different ways. The first embedding can be considered as a quantization of the map expressing the trace of a closed curve in terms of the shear coordinates of the enhanced Teichmüller space, and is a lift of Bonahon-Wong’s quantum trace map. The second embedding can be considered as a quantization of the map expressing the trace of a closed curve in terms of the lambda length coordinates of the decorated Teichmüller space, and is an extension of Muller’s quantum trace map. We explain the relation between the two quantum trace maps. We also show that the quantum cluster algebra of Muller is equal to a reduced version of the stated skein algebra. As applications we show that the stated skein algebra is an orderly finitely generated Noetherian domain and calculate its Gelfand-Kirillov dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abdiel, N., Frohman, C.: The localized skein algebra is frobenius. Algebr. Geom. Topol. 17(6), 3341–3373 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Alekseev, A., Grosse, A.Y., Schomerus, V.: Combinatorial quantization of the hamiltonian chern-simons theory I. Commun. Math. Phys. 172, 317–358 (1995). arXiv:hep-th/9403066

    MathSciNet  MATH  Google Scholar 

  3. Alekseev, A., Grosse, A.Y., Schomerus, V.: Combinatorial quantization of the hamiltonian chern-simons theory II. Commun. Math. Phys. 172, 317–358 (1995). arXiv:hep-th/9408097

    MATH  Google Scholar 

  4. Bai, H.: A uniqueness property for the quantization of teichmüller spaces. Geom. Dedicata 128, 1–16 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Ben-Zvi, D., Brochier, A., Jordan, D.: Integrating hopf algebras over surfaces. J. Topol. 11(4), 874–917 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Berenstein, A., Zelevinsky, A.: Quantum cluster algebras. Adv. Math. 195(2), 405–455 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Blanchet, C., Habegger, N., Masbaum, G., Vogel, P.: Three-manifold invariants derived from the Kauffman bracket. Topology 31(4), 685–699 (1992)

    MathSciNet  MATH  Google Scholar 

  8. Bloomquist, W., Lê, T. T. Q.: The Chebyshev-Frobenius homomorphism for stated skein modules of 3-manifolds. Preprint arXiv:2011.02130

  9. Bonahon, F., Wong, H.: Quantum traces for representations of surface groups in \(SL_2\). Geom. Topol. 15(3), 1569–1615 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Brown, K.A., Gordon, I.: Poisson orders, symplectic reflection algebras and representation theory. J. Reine Angew. Math. 559, 193–216 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Buffenoir, E., Roche, Ph.: Two Dimensional Lattice Gauge Theory Based on a Quantum Group. Commun. Math. Phys. 170, 669–698 (1995)

    MathSciNet  MATH  Google Scholar 

  12. Bullock, D.: Rings of \(Sl_2({\mathbb{C}})\)-characters and the Kauffman bracket skein module. Comment. Math. Helv. 72(4), 521–542 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Bullock, D., Frohman, C., Kania-Bartoszynska, J.: Understanding the Kauffman bracket skein module. J. Knot Theory Ramifications 8(3), 265–277 (1999)

    MathSciNet  MATH  Google Scholar 

  14. Chekhov, L., Fock, V.: Quantum Teichmüller spaces (Russian). Teoret. Mat. Fiz. 120(3), 511–528 (1999); translation in Theoret. and Math. Phys. 120(3), 1245–1259 (1999)

  15. Charles, L., Marché, J.: Multicurves and regular functions on the representation variety of a surface in SU(2). Comment. Math. Helv. 87, 409–431 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Costantino, F., Lê, T. T. Q.: Stated skein algebras of surfaces, J. EMS, to appear. See also preprint arXiv:1907.11400, (2019)

  17. Faddeev, L.: Modular double of a quantum group. In: Conference Moshe Flato 1999, Vol. I (Dijon), 149–156, Math. Phys. Stud., vol. 21. Kluwer Acad. Publ, Dordrecht (2000)

    MATH  Google Scholar 

  18. Faitg, M.: Holonomy and (stated) skein algebras in combinatorial quantization. Preprint arXiv:2003.08992

  19. Fock, V., Goncharov, A.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. Inst. Hautes Etudes Sci. 103, 1–211 (2006)

    MATH  Google Scholar 

  20. Fock, V., Goncharov, A.: Dual Teichmüller and lamination spaces. In: Handbook of Teichmüller theory. Vol. I, 647–684, IRMA Lect. Math. Theor. Phys., vol. 11. Eur. Math. Soc, Zurich (2007)

    MATH  Google Scholar 

  21. Fock, V., Goncharov, A.: The quantum dilogarithm and representations of quantum cluster varieties. Invent. Math. 175(2), 223–286 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Fomin, S., Thurston, D.: Cluster algebras and triangulated surfaces II:Lambda lengths. Mem. Am. Math. Soc. 255(1223), v+97 (2018)

    MathSciNet  Google Scholar 

  23. Frohman, C., Gelca, R., Lofaro, W.: The A-polynomial from the noncommutative viewpoint. Trans. Am. Math. Soc. 354(2), 735–747 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster algebras and Weil-Petersson forms. Duke Math. J. 127(2), 291–311 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Goodearl, K.R., Warfield, R.B.: An introduction to noncommutative Noetherian rings. London Mathematical Society Student Texts, vol. 61, 2nd edn. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  26. Hiatt, C.: Quantum traces in quantum Teichmüller theory. Algebr. Geom. Topol. 10, 1245–1283 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Higgins, V.: Triangular decomposition of \(SL_3\) skein algebras. Preprint arXiv:2008.09419

  28. Kauffman, L.: States models and the Jones polynomial. Topology 26, 395–407 (1987)

    MathSciNet  MATH  Google Scholar 

  29. Karuo, H., Lê, T. T. Q.: Degeneration of skein algebras of surfaces and decorated Teichmüller spaces, to appear

  30. Kashiwara, M.: Global crystal bases of quantum groups. Duke Math. J. 69(2), 455–485 (1993)

    MathSciNet  MATH  Google Scholar 

  31. Kashaev, R.: The hyperbolic volume of knots from the quantum dilogarithm. Lett. Math. Phys. 39, 269–275 (1997)

    MathSciNet  MATH  Google Scholar 

  32. Kashaev, R.: Quantization of Teichmüller spaces and the quantum dilogarithm. Lett. Math. Phys. 43(2), 105–115 (1998)

    MathSciNet  MATH  Google Scholar 

  33. Korinman, J.: Finite presentations for stated skein algebras and lattice gauge field theory. Preprint arXiv:2012.03237

  34. Korinman, J., Quesney, A.: Classical shadows of stated skein representations at roots of unity, Preprint arXiv:1905.03441, (2019)

  35. Lê, T.T.Q.: Quantum Teichmüller spaces and quantum trace map. J. Inst. Math. Jussieu 1–43 (2017). https://doi.org/10.1017/S1474748017000068. See also preprint arXiv:1511.06054

  36. Lê, T.T.Q.: Triangular decomposition of skein algebras. Quantum Topol. 9, 591–632 (2018). See also preprint arXiv:1609.04987, (2016)

  37. Lê, T.T.Q., Tran, T.: On the AJ conjecture for knots. Indiana Univ. Math. J. 64, 1103–1151 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Lê, T. T. Q., Sikora, A.: Triangular decomposition of skein \(SL_n\) algebra, to appear

  39. Lê, T. T. Q., Yu, T.: Stated skein modules of marked 3-manifolds/surfaces, a survey. Preprint arXiv:2005.14577

  40. Lê, T. T. Q., Yu, T.: Quantum trace for skein \(SL_n\) algebra, to appear

  41. Liu, X.: The quantum Teichmüller space as a noncommutative algebraic object. J. Knot Theory Ramifications 18, 705–726 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Lê, T.T.Q., Paprocki, J.: On Kauffman bracket skein modules of marked 3-manifolds and the Chebyshev-Frobenius homomorphism. Algebr. Geom. Topol. 19(7), 3453–3509 (2019). See also preprint arXiv:1804.09303, (2018)

  43. Matveev, S.V.: Algorithmic topology and classification of 3-manifolds. Algorithms and Computation in Mathematics, vol. 9, 2nd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  44. McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings. Grad Texts in Math, vol. 30. American Mathematical Society, Providence, RI (2000)

    MATH  Google Scholar 

  45. Muller, G.: Skein algebras and cluster algebras of marked surfaces. Quantum Topol. 7(3), 435–503 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Murakami, H., Murakami, J.: The colored Jones polynomials and the simplicial volume of a knot. Acta. Math. 186(1), 85–104 (2001)

    MathSciNet  MATH  Google Scholar 

  47. Przytycki, J.: Fundamentals of Kauffman bracket skein modules. Kobe J. Math. 16, 45–66 (1999)

    MathSciNet  MATH  Google Scholar 

  48. Przytycki, J., Sikora, A.: On the skein algebras and \(Sl_2({\mathbb{C}})\)-character varieties. Topology 39, 115–148 (2000)

    MathSciNet  MATH  Google Scholar 

  49. Przytycki, J., Sikora, A.: Skein algebras of surfaces. Trans. Am. Math. Soc. 371(2), 1309–1332 (2019)

    MathSciNet  MATH  Google Scholar 

  50. Reyes, A.: Gelfand-Kirillov dimension of Skew PBW extensions. Revista Colombiana de Mat. 47(1), 95–111 (2013)

    MathSciNet  MATH  Google Scholar 

  51. Schrader, G., Shapiro, A.A.: A cluster realization of \(U_q(sl_n)\) from quantum character varieties. Invent. Math. 216(3), 799–846 (2019)

    MathSciNet  MATH  Google Scholar 

  52. Turaev, V.: Skein quantization of Poisson algebras of loops on surfaces. Ann. Sci. Sc. Norm. Sup. (4) 24(6), 635–704 (1991)

    MathSciNet  MATH  Google Scholar 

  53. Turaev, V.: Conway and Kauffman modules of a solid torus. J. Soviet. Math. 52, 2799–2805 (1990)

    MathSciNet  MATH  Google Scholar 

  54. Turaev, V.: Quantum invariants of knots and \(3\)-manifolds, de Gruyter Studies in Mathematics, vol. 18. Walter de Gruyter & Co., Berlin (1994)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank F. Bonahon, F. Costantino, C. Frohman, J. Kania-Bartoszynska, A. Kricker, A. Sikora, and M. Yakimov for helpful discussions. The first author is supported in part by NSF grant DMS 1811114, and benefited from a visit to Nangyang Technological University in November 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Quan. tr. & emb. of st. sk. alg. into quan. tori.

Triangulation and quasitriangulation

Triangulation and quasitriangulation

1.1 Face and vertex matrices

Here we give a more formal definition of the face and vertex matrices.

Suppose \(\Delta \) is an ideal triangulation of the punctured bordered surface \({\mathfrak {S}}\). For each non-self-folded face \({\mathfrak {T}}\in {\mathcal {F}}\), the edges of \({\mathfrak {T}}\) are cyclically ordered. Given \(a,b\in \Delta \), if a and b are distinct edges of \({\mathfrak {T}}\), define

$$\begin{aligned} Q_{\mathfrak {T}}(a,b)={\left\{ \begin{array}{ll} 1,&{}b\text { is clockwise to }a,\\ -1,&{}b\text { is counterclockwise }a.\\ \end{array}\right. } \end{aligned}$$

Otherwise, let \(Q_{\mathfrak {T}}(a,b)=0\). For a self-folded face \({\mathfrak {T}}\), set \(Q_{\mathfrak {T}}=0\). Then the face matrix is

$$\begin{aligned} Q=\sum _{{\mathfrak {T}}\in {\mathcal {F}}}Q_{\mathfrak {T}}. \end{aligned}$$
(75)

The vertex matrix is defined for a quasitriangulation \({\mathcal {E}}\).

For each boundary puncture \(v\in {\mathcal {P}}_\partial \) and half-edges \(a',b'\), let \(P_{+,v}(a',b')=1\) if \(a'\ne b'\) and \(b'\) is counterclockwise to \(a'\) at v. Otherwise let \(P_{+,v}(a',b')=0\). Define the “positive part" \(P_+\) of the vertex matrix by

$$\begin{aligned} P_+(a,b)=\sum P_{+,v}(a',b'), \end{aligned}$$

where the sum is over punctures \(v\in \mathring{{\mathcal {P}}}\) and half-edges \(a',b'\) of arcs \(a,b\in {\mathcal {E}}\). For this definition to make sense, an isotopy might be necessary to make a and b disjoint, which is important for the diagonal elements. The vertex matrix is then \(P=P_+-P_+^T\). Alternatively, let \(P_v(a',b')=P_{+,v}(a',b')-P_{+,v}(b',a')\). Then \(P(a,b)=\sum P_v(a',b')\).

1.2 Extended matrices

Define the projection matrix \(J:\Delta \times \Delta _\partial \rightarrow {\mathbb {Z}}\) or \(J:{\mathcal {E}}\times {\mathcal {E}}_\partial \rightarrow {\mathbb {Z}}\) (depending on the context) by

$$\begin{aligned} J(a,b)={\left\{ \begin{array}{ll}1,&{}a=b,\\ 0,&{}a\ne b.\end{array}\right. } \end{aligned}$$

The extended matrices \(\bar{Q}:\bar{\Delta }\times \bar{\Delta }\rightarrow {\mathbb {Z}}\) and \(\bar{P},\bar{P}_+:\bar{{\mathcal {E}}}\times \bar{{\mathcal {E}}}\rightarrow {\mathbb {Z}}\) can be written in block matrix form

$$\begin{aligned} \bar{Q}&=\begin{pmatrix}Q&{}\quad J\\ -J^T&{}\quad 0\end{pmatrix}, \end{aligned}$$
(76)
$$\begin{aligned} \bar{P}&=\begin{pmatrix}P&{}\quad -(P_++P_+^T)J\\ J^T(P_++P_+^T)&{}\quad -J^T PJ\end{pmatrix}, \end{aligned}$$
(77)
$$\begin{aligned} \bar{P}_+&=\begin{pmatrix}P_+&{}\quad P_+J\\ J^T P_+&{}\quad J^T P_+J-2I\end{pmatrix}. \end{aligned}$$
(78)

Since J is a projection, it picks out blocks of matrices with the correct dimension.

1.3 Face-vertex matrix duality

For a punctured bordered surface \({\mathfrak {S}}\) with at least one boundary puncture, there is a relation between the face matrix and the vertex matrix. Consider a quasitriangulation \({\mathcal {E}}\) and its completion \(\Delta \). Let \(H=I_\partial -Q_{\mathcal {E}}\), where \(Q_{\mathcal {E}}\) is the restriction to \({\mathcal {E}}\times {\mathcal {E}}\), and \(I_\partial =JJ^T\). The restriction to \({\mathcal {E}}\) does not lose any information, since by definition, all entries involving a self-folded edge is 0, so the full matrix can be recovered by a 0-extension, i.e., \(Q=Q_{\mathcal {E}}\oplus 0\). The extended matrix \(\bar{H}\) is defined by, using the block matrix form,

$$\begin{aligned} \bar{H}=\begin{pmatrix}-Q_{\mathcal {E}}&{}\quad J\\ J^T&{}\quad -I\end{pmatrix}. \end{aligned}$$

Lemma A.1

\(HP_+=2I\), \(\bar{H}\bar{P}_+=2I\).

Proof

The extended case follows from the first part by a routine calculation.

The punctured monogon is a special case we can directly verify. Here \(P_+=(2)\) and \(H=(1)\). Thus we focus on other surfaces from now on. In particular, all edges that bound self-folded faces are interior.

There are three cases to consider.

Case 1. Suppose \(i\in \mathring{{\mathcal {E}}}\) does not bound a self-folded face. By definition,

$$\begin{aligned} (HP_+)(i,j)=\sum _{k\in {\mathcal {E}}}H(i,k)P_+(k,j)=P_+(a,j)-P_+(b,j)+P_+(c,j)-P_+(d,j), \end{aligned}$$

where abcd are as in Fig. 12a. Some of the sides might coincide, but using the sum-of-faces definition (75) of Q, the result is unaffected. We further split the sum into half-edges, and group the half-edges into pairs by corners of the quadrilateral.

First we consider \(j\notin \{i,a,b,c,d\}\). If a half-edge \(j'\) ends on one of the boundary punctures of the quadrilateral, then every corner incident to that puncture is entirely on one side of \(j'\). Thus every such corner contributes \(1-1\) or \(0-0\) to the sum, so the total is 0.

If \(j\in \{a,b,c,d\}\), isotope j into the interior of the quadrilateral. j goes through two consecutive corners, and they contribute \(1-1\) to the sum. In the two corners that j does not go through, the calculation is as before and they cancel out.

If \(j=i\), then a and c both contribute \(+1\) in the local picture, and any other corner incident to either end of i contributes 0 as before. Thus the total is 2.

Case 2. Suppose \(i\in \mathring{{\mathcal {E}}}\) bounds a self-folded face. We can use the same picture Fig. 12a and identify \(c=d\). In this case

$$\begin{aligned} (HP_+)(i,j)=P_+(a,j)-P_+(b,j). \end{aligned}$$

a and b form a (punctured) bigon. We can group half-edges of a and b into corners and repeat the calculation as in Case 1.

Case 3. Suppose \(i\in {\mathcal {E}}_\partial \), then

$$\begin{aligned} (HP_+)(i,j)=P_+(i,j)+P_+(a,j)-P_+(b,j), \end{aligned}$$

where ab are as in Fig. 12b. The calculation is again analogous to the first case. Note even though the i and a terms have the same sign, there is nothing counterclockwise to the ia corner. \(\square \)

Fig. 12
figure 12

Local pictures of the computation

Proof of (73)

This is a matrix equation, where \(\sigma ,K:\bar{{\mathcal {E}}}\times \bar{\Delta }\rightarrow {\mathbb {Z}}\) are given by

$$\begin{aligned} \sigma (a,c)=\sigma _a(c),\quad K(a,c)=K_a(c). \end{aligned}$$

Then (73) can be written as \(\sigma =\bar{H}K\). By Lemma A.1, we just need to show \(\bar{P}_+\sigma =2K\), i.e.

$$\begin{aligned} \sum _{b\in \bar{{\mathcal {E}}}}\bar{P}_+(a,b)\sigma _b(c)=2K_a(c),\quad a\in \bar{{\mathcal {E}}},c\in \bar{\Delta }. \end{aligned}$$
(79)

Also note \(\bar{P}_+\) is the restriction of K to \(\bar{{\mathcal {E}}}\times \bar{{\mathcal {E}}}\) by definition. Compare (70) with (78).

If \(c\in \bar{{\mathcal {E}}}\), then \(\sigma _b(c)\) is nonzero only when \(b=c\), and \(\sigma _c(c)=2\). Thus the equation is satisfied.

If \(c=e_v\) for \(v\in \mathring{{\mathcal {P}}}\), then \(\sigma _b(e_v)\) is nonzero only when \(b=b_v\) is the arc bounding the monogon containing v. In this case, \(\sigma _{b_v}(e_v)=1\). (79) is then equivalent to

$$\begin{aligned} \bar{P}_+(a,b_v)=2K_a(e_v). \end{aligned}$$

This is true by checking the local picture at v. We can always isotope a to be outside of the monogon. Then for each half edge of a, either \(b_v\) counts twice and \(e_v\) counts once, or none of them counts. Thus we have the desired equality. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lê, T.T.Q., Yu, T. Quantum traces and embeddings of stated skein algebras into quantum tori. Sel. Math. New Ser. 28, 66 (2022). https://doi.org/10.1007/s00029-022-00781-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-022-00781-3

Keywords

Mathematics Subject Classification

Navigation