Skip to main content
Log in

Stated Skein Modules of Marked 3-Manifolds/Surfaces, a Survey

  • Published:
Acta Mathematica Vietnamica Aims and scope Submit manuscript

Abstract

We give a survey of some old and new results about the stated skein modules/algebras of 3-manifolds/surfaces. For generic quantum parameter, we discuss the splitting homomorphism for the 3-manifold case, general structures of the stated skein algebras of marked surfaces (or bordered punctured surfaces) and their embeddings into quantum tori. For roots of 1 quantum parameter, we discuss the Frobenius homomorphism (for both marked 3-manifolds and marked surfaces) and describe the center of the skein algebra of marked surfaces, the dimension of the skein algebra over the center, and the representation theory of the skein algebra. In particular, we show that the skein algebra of non-closed marked surface at any root of 1 is a maximal order. We give a full description of the Azumaya locus of the skein algebra of the puncture torus and give partial results for closed surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. In this paper a \(\partial \mathfrak {S}\)-tangle diagram is a positively ordered \(\partial \mathfrak {S}\)-tangle diagram of [40].

References

  1. Abdiel, N., Frohman, C.: The localized skein algebra is Frobenius. Algebr. Geom. Topol. 17(6), 3341–3373 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alekseev, A.Y., Grosse, H., Schomerus, V.: Combinatorial quantization of the Hamiltonian Chern-Simons theory I. Comm. Math. Phys. 172, 317–358 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Zvi, D., Brochier, A., Jordan, D.: Quantum character varieties and braided module categories. Selecta Math. 24(5), 4711–4748 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berenstein, A., Zelevinsky, A.: Quantum cluster algebras. Adv. Math. 195(2), 405–455 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blanchet, C., Habegger, N., Masbaum, G., Vogel, P.: Three-manifold invariants derived from the Kauffman bracket. Topology 31(4), 685–699 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bloomquist, W., Lê, T.T.Q.: The Chebyshev-Frobenius Homomorphism for stated skein modules of 3-manifolds. arXiv:2011.02130 (2020)

  7. Bonahon, F., Wong, H.: Quantum traces for representations of surface groups in \(\text {SL}_{2}(\mathbb {C})\). Geom. Topol. 15(3), 1569–1615 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonahon, F., Wong, H.: Representations of the Kauffman skein algebra I: invariants and miraculous cancellations. Invent. Math. 204(1), 195–243 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonahon, F., Wong, H.: Representations of the Kauffman bracket skein algebra II: Punctured surfaces. Algebr. Geom. Topol. 17(6), 3399–3434 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonahon, F., Wong, H.: Representations of the Kauffman bracket skein algebra III : closed surfaces and naturality. Quantum Topol. 10(2), 325–398 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brown, K.A., Goodearl, K.R.: Lectures on Algebraic Quantum Groups. Advanced Courses in Mathematics CRM Barcelona, Birkhuser, Basel (2002)

  12. Brown, K.A., Yakimov, M.: Azumaya loci and discriminant ideals of PI algebras. Adv. Math. 340, 1219–1255 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Buffenoir, E., Roche, P.: Two dimensional lattice gauge theory based on a quantum group. Comm. Math. Phys. 170, 669–698 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bullock, D.: Rings of \(Sl_{2}(\mathbb {C})\)-characters and the Kauffman bracket skein module. Comment. Math. Helv. 72(4), 521–542 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bullock, D., Frohman, C., Kania-Bartoszynska, J.: Understanding the Kauffman bracket skein module. J. Knot Theory Ramif. 8(3), 265–277 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chekhov, L., Fock, V.: Quantum teichmüller spaces. (Russian) Teoret. Mat. Fiz. 120(3), 511–528 (1999). Translation in Theoret. and Math. Phys. 120(3), 1245–1259 (1999)

    Article  MathSciNet  Google Scholar 

  17. Costantino, F., Lê, T.T.Q.: Stated skein algebras of surfaces. Journal of EMS, to appear. arXiv:1907.11400 (2019)

  18. Costantino, F., Lê, T.T.Q.: TQFT for the stated skein algebras of marked 3-manifolds. To appear

  19. De Concini, C., Procesi, C.: Quantum groups. In: “D-modules, representation theory, and quantum groups” (Venice, 1992), 31–140, Lecture Notes in Math., 1565. Springer, Berlin (1993)

  20. Faitg, M.: Holonomy and (stated) skein algebras in combinatorial quantization. arXiv:2003.08992 (2020)

  21. Ganev, I., Jordan, D., Safronov, P.: The quantum Frobenius for character varieties and multiplicative quivervarieties. arXiv:1901.11450 (2019)

  22. Goodearl, K.R., Warfield, R.B.: An Introduction to Noncommutative Noetherian Rings, Second Edition London Mathematical Society Student Texts, vol. 61. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  23. Fock, V.V., Goncharov, A.B.: The quantum dilogarithm and representations of quantum cluster varieties. Invent. Math. 175, 223–286 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fock, V.V., Rosly, A.A.: Poisson structure on moduli of flat connections on Riemann surfaces and the r-matrix. Moscow Seminar in Mathematical Physics. Am. Math. Soc. Transl. Ser. 2191, 67–86 (1999)

    MATH  Google Scholar 

  25. Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces. I. Cluster complexes. Acta Math. 201, 83–146 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Frohman, C., Gelca, R.: Skein modules and the noncommutative torus. Trans. Am. Math. Soc. 352(10), 4877–4888 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Frohman, C., Gelca, R., Lofaro, W.: The A-polynomial from the noncommutative viewpoint. Trans. Am. Math. Soc. 354(2), 735–747 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Frohman, C., Kania-Bartoszynska, J., Lê, T. T. Q.: Unicity for representations of the Kauffman bracket skein algebra. Invent. Math. 215(2), 609–650 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Frohman, C., Kania-Bartoszynska, J., Lê, T.T.Q.: Dimension and trace of the Kauffman bracket skein algebra. arXiv:1902.02002 (2019)

  30. Karuo, H., Lê, T.T.Q.: Degeneration of skein algebras and (quantum) decorated Teichmüller spaces. To appear

  31. Kashiwara, M.: Global crystal bases of quantum groups. Duke Math. J. 69(2), 455–485 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kashaev, R.M.: The hyperbolic volume of knots from the quantum dilogarithm. Lett. Math. Phys. 39(3), 269–275 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kashaev, R.: Quantization of teichmüller spaces and the quantum dilogarithm. Lett. Math. Phys. 43(2), 105–115 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kassel, C.: Quantum Groups. Springer Verlag, New York (1995). Graduate texts in mathematics, No. 155

    Book  MATH  Google Scholar 

  35. Kauffman, L.: States models and the Jones polynomial. Topology 26, 395–407 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. Korinman, J., Quesney, A.: Classical shadows of stated skein representations at roots of unity. arXiv:1905.03441 (2019)

  37. Jones, V.: Polynomial invariants of knots via von Neumann algebras. Bull. Am. Math. Soc. 12, 103–111 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lê, T. T. Q.: On Kauffman bracket skein modules at roots of unity. Algebr. Geom. Topol. 15(2), 1093–1117 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lê, T.T.Q.: Quantum Teichmüller spaces and quantum trace map. J. Inst. Math. Jussieu. 1–43. https://doi.org/10.1017/S1474748017000068. See also preprint arXiv:1511.06054 (2017)

  40. Lê, T. T. Q.: Triangular decomposition of skein algebras. Quantum Topol. 9, 591–632 (2016). See also preprint arXiv:1609.04987

    Article  MathSciNet  MATH  Google Scholar 

  41. Lê, T.T.Q.: The colored Jones polynomial and the AJ conjecture. In: Lectures on quantum topology in dimension three (by T. Le, C. Lescop, R. Lipshitz, P. Turner), Panoramas et Syntheses, No. 48, Soc. Math. France, pp. 33–90 (2016)

  42. Lê, T.T.Q., Sikora, A.: Triangular decomposition of SLn-skein algebras. Preprint (2020)

  43. Lê, T.T.Q., Yu, T.: Quantum traces and embeddings of stated skein algebras into quantum tori. arXiv:2012.15272 (2020)

  44. Lê, T.T.Q., Yu, T.: Stated skein algebra of surfaces: centers and representations. To appear

  45. Lê, T.T.Q., Paprocki, J.: On Kauffman bracket skein modules of marked 3-manifolds and the Chebyshev-Frobenius homomorphism. Algebr. Geom. Topol. 19(7), 3453–3509 (2018). See also preprint arXiv:1804.09303

    Article  MathSciNet  MATH  Google Scholar 

  46. Lusztig, G.: Quantum groups at roots of 1. Geom. Dedicata 35 (1–3), 89–113 (1990)

    MathSciNet  MATH  Google Scholar 

  47. Lusztig, G.: Introduction to quantum groups. Progress in Mathematics, vol. 110. Birkhäuser xii+ 341 pp (1993)

  48. Majid, S.: Foundations of Quantum Qroup Theory. Cambridge University Press (1995)

  49. McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings Graduate Studies in Mathematics, vol. 30. American Mathematical Society, Providence, RI (2001)

    Google Scholar 

  50. Muller, G.: Skein algebras and cluster algebras of marked surfaces. Quantum Topol. 7(3), 435–503 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Paprocki, J.: Quantum torus methods for Kauffman bracket skein modules. Ph.D. thesis, Georgia Institute of Technology. See also preprint arXiv:1910.01676

  52. Penner, R.C.: Decorated Teichmüller Theory with a Foreword by Yuri I. Manin. QGM Master Class Series. European Mathematical Society, Zürich (2012)

    Book  Google Scholar 

  53. Przytycki, J.: Fundamentals of Kauffman bracket skein modules. Kobe J. Math. 16, 45–66 (1999)

    MathSciNet  MATH  Google Scholar 

  54. Przytycki, J., Sikora, A.: On the skein algebras and \(Sl_{2}(\mathbb {C})\)-character varieties. Topology 39, 115–148 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  55. Przytycki, J., Sikora, A.: Skein algebras of surfaces. arXiv:1602.07402 (2018)

  56. Turaev, V.: Skein quantization of Poisson algebras of loops on surfaces. Ann. Sci. Sc. Norm. Sup. (4) 24(6), 635–704 (1991)

    MathSciNet  MATH  Google Scholar 

  57. Turaev, V.: Conway and Kauffman modules of a solid torus. J. Soviet. Math. 52, 2799–2805 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  58. Turaev, V.: Quantum Invariants of Knots and 3-Manifolds De Gruyter Studies in Mathematics, vol. 18. Walter de Gruyter & Co., Berlin (1994)

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to thank F. Bonahon, F. Costantino, C. Frohman, J. Kania-Bartoszynska, T. Schedler, A. Sikora, and M. Yakimov for helpful discussions. The first author is supported in part by NSF grant DMS 1811114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thang T. Q. Lê.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lê, T.T.Q., Yu, T. Stated Skein Modules of Marked 3-Manifolds/Surfaces, a Survey. Acta Math Vietnam 46, 265–287 (2021). https://doi.org/10.1007/s40306-021-00417-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40306-021-00417-2

Keywords

Mathematics Subject Classification (2010)

Navigation