Skip to main content
Log in

On the Fourier spectrum of functions on Boolean cubes

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let f be a real-valued function of degree d defined on the n-dimensional Boolean cube \(\{ \pm 1\}^{n}\), and \(f(x) = \sum _{S \subset \{1,\ldots ,n\}} \widehat{f}(S) \prod _{k \in S} x_k\) its Fourier-Walsh expansion. The main result states that there is an absolute constant \(C >0\) such that the \(\ell _{2d/(d+1)}\)-sum of the Fourier coefficients of \(f:\{ \pm 1\}^{n} \longrightarrow [-1,1]\) is bounded by \(C^{\sqrt{d \log d}}\). It was recently proved that a similar result holds for complex-valued polynomials on the n-dimensional polytorus \(\mathbb {T}^n\), but that in contrast to this, a replacement of the n-dimensional torus \(\mathbb {T}^n\) by the n-dimensional cube \([-1, 1]^n\) leads to a substantially weaker estimate. This in the Boolean case forces us to invent novel techniques which differ from the ones used in the complex or real case. We indicate how our result is linked with several questions in quantum information theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaronson, S., Ambainis, A.: The need for structure in quantum speedups. Theory Comput. 10, 133–166 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bayart, F., Pellegrino, D., Seaoane-Sepúlveda, J.B.: The Bohr radius of the \(n\)-dimensional polydisk is equivalent to \(\sqrt{(\log {n})/n}\). Adv. Math. 264, 726–746 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blei, R.: Analysis in integer and fractional dimensions, Cambridge Studies in Advanced Mathematics 71 (2001)

  4. Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann. Math. 32(3), 600–622 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borwein, P., Erdélyi, T.: Polynomials and polynomial inequalities. Graduate Texts in Mathematics, 161. Springer, New York (1995)

    Book  Google Scholar 

  6. Campos, J.R., Jiménez Rodríguez, P., Muñoz-Fernández, G.A., Pellegrino, D., Seoane-Sepúlveda, J.B.: On the real polynomial Bohnenblust–Hille inequality. Linear Algebra Appl. 465, 391–400 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Defant, A., Frerick, L., Ortega-Cerdá, J., Ounaäies, M., Seip, K.: The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive. Ann. Math (2) 174(1), 485–497 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Defant, A., Mastyło, M.: Bohnenblust-Hille inequalities for Lorentz spaces via interpolation. Anal. PDE 9(5), 1235–1258 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Defant, A., Mastyło, M., Pérez, A.: Bohr’s phenomenon for functions on the Boolean cube; J. Funct. Anal. (2018). https://doi.org/10.1016/j.jfa.2018.05.009

  10. De Wolf, R.: A brief introduction to Fourier analysis on the Boolean cube. Theory Comput Graduate Surv 1, 1–20 (2008)

    Google Scholar 

  11. Dinur, I., Friedgut, E., Kindler, G., O’Donnell, R.: On Fourier tails of bounded functions over the discrete cube. Israel J. Math. 160, 389–412 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Harris, L.A.: Bounds on the derivatives of holomorphic functions of vectors. Analyse fonctionnelle et applications (Comptes Rendus Colloq. Analyse, Inst. Mat., Univ. Federal Rio de Janeiro, Rio de Janeiro, 1972), 145–163. Actualités Aci. Indust., No. 1367, Hermann, Paris (1975)

  13. Klimek, M.: Metrics associated with extremal plurisubharmonic functions. Proc. Am. Math. Soc. 123(9), 2763–2770 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kwapień, S.: Decoupling inequalities for polynomial chaos. Ann. Probab. 15(3), 1062–1071 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Littlewood, J.E.: On bounded bilinear forms in an infinite number of variables. Quart. J. Math. 1, 164–174 (1930)

    Article  MATH  Google Scholar 

  16. Montanaro, A.: Some applications of hypercontractive inequalities in quantum information theory. J. Math. Phys. 53, 122–206 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Natanson, I.P.: Constructive function theory, vol. 1. Frederick Ungar, New York (1964)

    MATH  Google Scholar 

  18. O’Donnell, R: Some topics in analysis of Boolean functions. In: Proc. 40th ACM Symp. Theory Comput., 569–578. ACM, New York (2008)

  19. O’Donnell, R.: Analysis of Boolean functions. Cambridge University Press, New York (2014)

    Book  MATH  Google Scholar 

  20. O’Donnell, R., Zhao, Y.: Polynomial bounds for decoupling with applications, 31st Conference on Computational Complexity, Art. No. 24, LIPIcs. Leibniz Int. Proc. Inform., 50, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2016)

  21. ODonnell, R., Saks, M., Schramm, O., Servedio, R.: Every decision tree has an influential variable, In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, 31–39 (2005)

  22. Visser, C.: A generalization of Tchebychef’s inequality to polynomials in more than one variable. Indagationes Math. 8, 310–311 (1946)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Pérez.

Additional information

Communicated by Loukas Grafakos.

The second named author was supported by the National Science Centre, Poland, project no. 2015/17/B/ST1/00064. The research of the third author was partially done during a stay in Oldenburg (Germany) under the support of a PhD fellowship of “La Caixa Foundation”, and of the projects of MINECO/FEDER (MTM2014-57838-C2-1-P) and Fundación Séneca - Región de Murcia (CARM 19368/PI/14).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Defant, A., Mastyło, M. & Pérez, A. On the Fourier spectrum of functions on Boolean cubes. Math. Ann. 374, 653–680 (2019). https://doi.org/10.1007/s00208-018-1756-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-018-1756-y

Keywords

Mathematics Subject Classification

Navigation