Skip to main content
Log in

Pseudo-boolean functions and the multiplicity of the zeros of polynomials

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

A highlight of this paper states that there is an absolute constant c 1 > 0 such that every polynomial P of the form P(z) = Σ n j=0 a j z j, a j ∈ ℂ with

$$\left| {a_0 } \right| = 1, \left| {a_j } \right| \leqslant M^{ - 1} \left( {\begin{array}{*{20}c} n \\ j \\ \end{array} } \right), j = 1,2, \ldots ,n,$$

for some 2 ≤ Me n has at most \(n - \left\lfloor {{c_1}\sqrt {n\log M} } \right\rfloor \) zeros at 1. This is compared with some earlier similar results reviewed in the introduction and closely related to some interesting Diophantine problems. Our most important tool is an essentially sharp result due to Coppersmith and Rivlin asserting that if F n = {1, 2, …, n}, there exists an absolute constant c > 0 such that

$$\left| {P(0)} \right| \leqslant \exp (cL)\mathop {\max }\limits_{x \in {F_n}} \left| {P(x)} \right|$$

for every polynomial P of degree at most \(m \leqslant \sqrt {nL/16} \) with 1 ≤ L < 16n. A new proof of this inequality is included in our discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Amoroso, Sur le diamètre transfini entier d’un intervalle réel, Ann. Inst. Fourier Grenoble 40 1990, 885–911.

    Article  MATH  MathSciNet  Google Scholar 

  2. V. V. Andrievskii and H. P. Blatt, Discrepancy of Signed Measures and Polynomial Approximation Springer-Verlag, New York, 2002.

    Book  MATH  Google Scholar 

  3. B. Aparicio, New bounds on the minimal Diophantine deviation from zero on [0, 1]_and [0, 1/4], Actus Sextas Jour. Mat. Hisp. Lusitanas 1979, 289–291.

  4. F. Beaucoup, P. Borwein, D. W. Boyd, and C. Pinner, Multiple roots of [−1, 1] power series, J. London Math. Soc. (2) 57 (1998), 135–147.

    Article  MathSciNet  Google Scholar 

  5. A. Bloch and G. Pólya, On the roots of certain algebraic equations, Proc. London Math. Soc. (2) 33 (1932), 102–114.

    Article  Google Scholar 

  6. E. Bombieri and J. Vaaler Polynomials with low height and prescribed vanishing, in Analytic Number Theory and Diophantine Problems, Birkhäuser Boston, Boston, MA, 1987, pp. 53–73.

    Chapter  Google Scholar 

  7. P. Borwein, Computational Excursions in Analysis and Number Theory, Springer-Verlag, New York, 2002.

    Book  MATH  Google Scholar 

  8. P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, New York, 1995.

    Book  MATH  Google Scholar 

  9. P. Borwein and T. Erdélyi The integer Chebyshev problem, Math. Comput. 65 (1996), 661–681.

    Article  MATH  Google Scholar 

  10. P. Borwein and T. Erdélyi, Generalizations of Müntz’s theorem via a Remez-type inequality for Müntz spaces, J. Amer. Math. Soc. 10 (1997), 327–349.

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Borwein and T. Erdélyi, On the zeros of polynomials with restricted coefficients, Illinois J. Math. 41 (1997), 667–675.

    MATH  MathSciNet  Google Scholar 

  12. P. Borwein and T. Erdélyi, Lower bounds for the number of zeros of cosine polynomials in the period: a problem of Littlewood, Acta Arith. 128 (2007), 377–384.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Borwein, T. Erdélyi, R. Ferguson, and R. Lockhart, On the zeros of cosine polynomials: solution to a problem of Littlewood, Ann. of Math. (2) 167 (2008), 1109–1117.

    Article  MATH  MathSciNet  Google Scholar 

  14. P. Borwein, T. Erdélyi, and G. Kós, Littlewood-type problems on [0, 1], Proc. London Math. Soc. (3) 79 (1999), 22–46.

    Article  MATH  MathSciNet  Google Scholar 

  15. P. Borwein, T. Erdélyi, and G. Kós, The multiplicity of the zero at 1 of polynomials with constrained coefficients, Acta Arith. 159 (2013), 387–395.

    Article  MATH  MathSciNet  Google Scholar 

  16. P. Borwein, T. Erdélyi, and F. Littmann, Polynomials with coefficients from a finite set, Trans. Amer. Math. Soc. 360 (2008), 5145–5154.

    Article  MATH  MathSciNet  Google Scholar 

  17. P. Borwein and C. Ingalls, The Prouhet-Tarry-Escott problem, Enseign. Math. (2) 40 (1994), 3–27.

    MATH  MathSciNet  Google Scholar 

  18. P. Borwein and M. J. Mossinghoff, Polynomials with height 1 and prescribed vanishing at 1, Experiment. Math. 9 (2000), 425–433.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. Boyd, On a problem of Byrnes concerning polynomials with restricted coefficients, Math. Comp. 66 (1977), 1697–1703.

    Article  Google Scholar 

  20. H. Buhrman, R. Cleve, R. de Wolf, and C. Zalka, Bounds for small-error and zero-error quantum algorithms, in 40th Annual Symposium on Foundations of Computer Science, IEEE Computer Soc., Los Alamitos, CA, pp. 358–368.

  21. P. G. Casazza and N. J. Kalton, Roots of complex polynomials and Weyl-Heisenberg frame sets, Proc. Amer. Math. Soc. 130 (2002), 2313–2318.

    Article  MATH  MathSciNet  Google Scholar 

  22. J. M. Cooper and A. M. Dutle, Greedy Galois games, Amer. Math. Monthly 120 (2013), 441–451.

    Article  MATH  MathSciNet  Google Scholar 

  23. D. Coppersmith and T. J. Rivlin, The growth of polynomials bounded at equally spaced points, SIAM J. Math. Anal. 23 (1992), 970–983.

    Article  MATH  MathSciNet  Google Scholar 

  24. E. Croot and D. Hart, h-fold sums from a set with few products, SIAM J. Discrete Math. 24 (2010), 505–519.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Dubickas, On the order of vanishing at 1 of a polynomial, Lithuanian Math. J. 39 (1999), 365–370.

    Article  MATH  MathSciNet  Google Scholar 

  26. A. Dubickas, Three problems for polynomials of small measure, Acta Arith. 98 (2001), 279–292.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Dudik and L. J. Schulman, Reconstruction from subsequences, J. Combin. Theory Ser. A 103 (2003), 337–348.

    Article  MATH  MathSciNet  Google Scholar 

  28. T. Erdélyi, Markov-Bernstein type inequalities for polynomials under Erdős-type constraints, in Paul Erdős and his Mathematics I, Springer-Verlag New York, NY, 2002, pp. 219–239.

    Google Scholar 

  29. T. Erdélyi, Polynomials with Littlewood-type coefficient constraints, in Approximation Theory X, Vanderbilt University Press, Nashville, TN, 2002, pp. 153–196.

    Google Scholar 

  30. T. Erdélyi, An improvement of the Erdős-Turán theorem on the distribution of zeros of polynomials, C. R. Acad. Sci. Paris 346 (2008), 267–270.

    Article  MATH  Google Scholar 

  31. T. Erdélyi, Extensions of the Bloch-Pólya theorem on the number of distinct real zeros of polynomials, J. Théor. Nombres Bordeaux 20 (2008) 281–287.

    Article  MATH  MathSciNet  Google Scholar 

  32. P. Erdős and P. Turán, On the distribution of roots of polynomials, Ann. of Math. (2) 51 (1950), 105–119.

    Article  MathSciNet  Google Scholar 

  33. Le Baron O. Ferguson, Approximation by Polynomials with Integral Coefficients, American Mathematical Society, Providence, RI, 1980.

    Book  MATH  Google Scholar 

  34. W. Foster and I. Krasikov, An improvement of a Borwein-Erdélyi-Kós result, Methods Appl. Anal. 7 (2000), 605–614.

    MATH  MathSciNet  Google Scholar 

  35. C. S. Güntürk, Approximation by power series with ±1 coefficients, Int. Math. Res. Not. 2005, 1601–1610.

  36. L. K. Hua, Introduction to Number Theory, Springer-Verlag Berlin, New York, 1982.

    MATH  Google Scholar 

  37. J. P. Kahane Some Random Series of Functions, 2nd ed., Cambridge University Press, Cambridge, 1985.

    MATH  Google Scholar 

  38. G. Kós, P. Ligeti, and P. Sziklai, Reconstruction of matrices from submatrices, Math. Comp. 78 (2009), 1733–1747.

    Article  MATH  MathSciNet  Google Scholar 

  39. I. Krasikov, Multiplicity of zeros and discrete orthogonal polynomials, Results Math. 45 (2004), 59–66.

    Article  MATH  MathSciNet  Google Scholar 

  40. M. Minsky and S. Papert, Perceptrons: An Introduction to Computational Geometry, MIT Press, Cambridge MA, 1968.

    Google Scholar 

  41. M. J. Mossinghoff, Polynomials with restricted coefficients and prescribed noncyclotomic factors, LMS J. Comput. Math. 6 (2003), 314–325.

    Article  MATH  MathSciNet  Google Scholar 

  42. N. Nisan and M. Szegedy, On the degree of Boolean functions as real polynomials, Comput. Complexity 4 (1994), 301–313.

    Article  MATH  MathSciNet  Google Scholar 

  43. A. M. Odlyzko and B. Poonen, Zeros of polynomials with 0, 1 coefficients, Enseign. Math. (2) 39 (1993), 317–348.

    MATH  MathSciNet  Google Scholar 

  44. A. A. Prikhodko, On flat Littlewood polynomials with unimodular coefficients, (2012).

  45. I. E. Pritsker and A. A. Sola, Expected discrepancy for zeros random algebraic polynomials, Proc. Amer. Math. Soc. 142 (2014), 4251–4263.

    Article  MATH  MathSciNet  Google Scholar 

  46. E. A. Rakhmanov, Bounds for polynomials with a unit discrete norm, Ann. of Math. (2) 165 (2007), 55–88.

    Article  MATH  MathSciNet  Google Scholar 

  47. F. Rodier, Sur la non-linéarité des fonctions booléennes, Acta Arith. 115 (2004), 1–22.

    Article  MATH  MathSciNet  Google Scholar 

  48. R. Salem and A. Zygmund, Some properties of trigonometric series whose terms have random signs, Acta Math. 91 (1954), 245–301.

    Article  MATH  MathSciNet  Google Scholar 

  49. I. Schur, Untersuchungen über algebraische Gleichungen, Sitz. Preuss. Akad. Wiss., Phys.-Math. Kl. (1933), 403–428.

  50. I. E. Shparlinski, Finite Fields, Kluwer Academic Poublishers, Dordrecht, 1999.

    MATH  Google Scholar 

  51. R. Špalek, A dual polynomial for OR, arXiv:0803.4516 [cs.CC].

  52. G. Szegő, Bemerkungen zu einem Satz von E. Schmidt über algebraische Gleichungen, Sitz. Preuss. Akad. Wiss., Phys.-Math. Kl. (1934), 86–98.

  53. V. Totik and P. Varjú, Polynomials with prescribed zeros and small norm, Acta Sci. Math. (Szeged) 73 (2007), 593–611.

    MATH  MathSciNet  Google Scholar 

  54. P. Turán, On a New Method of Analysis and its Applications, Wiley, New York, 1984.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Erdélyi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdélyi, T. Pseudo-boolean functions and the multiplicity of the zeros of polynomials. JAMA 127, 91–108 (2015). https://doi.org/10.1007/s11854-015-0025-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-015-0025-1

Keywords

Navigation