Skip to main content
Log in

A Microscopic Model for a One Parameter Class of Fractional Laplacians with Dirichlet Boundary Conditions

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

A Publisher Correction to this article was published on 08 October 2020

This article has been updated

Abstract

We prove the hydrodynamic limit for the symmetric exclusion process with long jumps given by a mean zero probability transition rate with infinite variance and in contact with infinitely many reservoirs with density \(\alpha \) at the left of the system and \(\beta \) at the right of the system. The strength of the reservoirs is ruled by \(\kappa N^{-\theta }>0\). Here N is the size of the system, \(\kappa >0\) and \(\theta \in {{\mathbb {R}}}\). Our results are valid for \(\theta \le 0\). For \(\theta =0\), we obtain a collection of fractional reaction–diffusion equations indexed by the parameter \(\kappa \) and with Dirichlet boundary conditions. Their solutions also depend on \(\kappa \). For \(\theta <0\), the hydrodynamic equation corresponds to a reaction equation with Dirichlet boundary conditions. The case \(\theta > 0\) is still open. For that reason we also analyze the convergence of the unique weak solution of the equation in the case \(\theta =0\) when we send the parameter \(\kappa \) to zero. Indeed, we conjecture that the limiting profile when \(\kappa \rightarrow 0\) is the one that we should obtain when taking small values of \(\theta >0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 08 October 2020

    The second equation of Theorem 3.2

Notes

  1. In the diffusive case \(\gamma >2\) the limiting PDE is given by the heat equation with Dirichlet boundary conditions [4]. It does not depend on \(\kappa \).

References

  1. Baldasso , R., Menezes , O., Neumann , A., Souza , R.: Exclusion process with slow boundary. J. Stat. Phys. 167, 1112–1142, 2017

    Article  ADS  MathSciNet  Google Scholar 

  2. Basile, G., Komorowski, T., Olla, S.: Private communication, 2015

  3. Bernardin , C., Jiménez-Oviedo , B.: Fractional Fick’s law for the boundary driven exclusion process with long jumps. ALEA Lat. Am. J. Probab. Math. Stat. 14, 473–501, 2017

    Article  MathSciNet  Google Scholar 

  4. Bernardin , C., Gonçalves , P., Jiménez-Oviedo , B.: Slow to Fast infinitely extended reservoirs for the symmetric exclusion process with long jumps. Markov Process. Relat. Fields 25, 217–274, 2019

    MathSciNet  MATH  Google Scholar 

  5. Bogdan , K., Burdzy , K., Chen , Z.-Q.: Censored stable processes. Prob. Theory Relat. fields 127, 89–152, 2003

    Article  MathSciNet  Google Scholar 

  6. Brezis , H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin 2010

    Book  Google Scholar 

  7. Denisov , S., Klafter , J., Zaburdaev , V.: Levy walks. Rev. Mod. Phys. 87, 483, 2015

    Article  ADS  Google Scholar 

  8. Dubkov , A.A., Spagnolo , B., Uchaikin , V.V.: Lévy flight superdiffusion: an introduction. Int. J. Bifurc. Chaos 18, 2649, 2008

    Article  Google Scholar 

  9. Dhar , A.: Heat transport in low-dimensional systems. Adv. Phys. 57, 457, 2008

    Article  ADS  Google Scholar 

  10. Dhar, A., Saito, K.: Anomalous transport and current fluctuations in a model of diffusing Levy walkers. eprint arXiv:1308.5476

  11. Dhar , A., Saito , K., Derrida , B.: Exact solution of a Levy walk model for anomalous heat transport. Phys. Rev. E 87, 010103(R), 2013

    Article  ADS  Google Scholar 

  12. Dyda , B.: A fractional order Hardy inequality. Illinois J. Math. 48(2), 575–588, 2004

    Article  MathSciNet  Google Scholar 

  13. Di Nezza , E., Palatucci , G., Valdinoci , E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573, 2012

    Article  MathSciNet  Google Scholar 

  14. Franco , T., Gonçalves , P., Neumann , A.: Hydrodynamical behavior of symmetric exclusion with slow bonds. Ann. l’Inst. Henri Poincaré Prob. Stat. 49(2), 402–427, 2013

    Article  ADS  MathSciNet  Google Scholar 

  15. Guan , Q.-Y., Ma , Z.-M.: The reflected \(\alpha \)-symmetric stable processes and regional fractional Laplacian. Probab. Theory Relat. Fields 134(4), 649–694, 2006

    Article  MathSciNet  Google Scholar 

  16. Kipnis , C., Landim , C.: Scaling Limits of Interacting Particle Systems. Springer, New York 1999

    Book  Google Scholar 

  17. Kipnis , C., Landim , C., Olla , S.: Hydrodynamic limit for a non-gradient system: the generalized symmetric exclusion process. Comm. Pure Appl. Math. 47(11), 1475–1545, 1994

    Article  MathSciNet  Google Scholar 

  18. Kundu , A., Bernardin , C., Saito , K., Kundu , A., Dhar , A.: Fractional equation description of an open anomalous heat conduction set-up. J. Stat. Mech. Theory Exp. 1, 013205, 2019

    Article  MathSciNet  Google Scholar 

  19. Lepri , S., Livi , R., Politi , A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1–80, 2003

    Article  ADS  MathSciNet  Google Scholar 

  20. Lepri , S., Politi , A.: Density profiles in open superdiffusive systems. Phys. Rev. E 83, 030107(R), 2011

    Article  ADS  Google Scholar 

  21. Mou , C., Yi , Y.: Interior regularity for regional fractional Laplacian. Commun. Math. Phys 340, 233–251, 2015

    Article  ADS  MathSciNet  Google Scholar 

  22. Roubíček , T.: Nonlinear Partial Differential Equations with Applications, vol. 153. Springer, Berlin 2013

    Book  Google Scholar 

  23. Vázquez , J.L.: Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete Contin. Dyn. Syst. Ser. S 7(4), 857–885, 2014

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Projects EDNHS ANR-14-CE25-0011, LSD ANR-15-CE40-0020-01 of the French National Research Agency (ANR) and of the PHC Pessoa Project 37854WM. B.J.O. thanks Universidad Nacional de Costa Rica and L’institut Français d’Amérique centrale-IFAC for financial support through his Ph.D grant. P.G. thanks FCT/Portugal for support through the Project UID/MAT/04459/2013. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovative programme (Grant Agreement No 715734). This work was finished during the stay of P.G. at Institut Henri Poincaré - Centre Emile Borel during the trimester “Stochastic Dynamics Out of Equilibrium”. P.G. thanks this institution for hospitality and support. The authors thank the Program Pessoa of Cooperation between Portugal and France with reference 406/4/4/2017/S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bernardin.

Additional information

Communicated by A. Garroni

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: Due to typesetting mistakes, in equations 2.1 and 2.6 the 1 was incorrect.

Appendix A: Computations Involving the Generator

Appendix A: Computations Involving the Generator

Lemma A.1

For any \(x \ne y \in \Lambda _N\), we have

  1. (i)

    \(L_N^0 (\eta _x \eta _y) = \eta _x L_N^0 \eta _y + \eta _y L_N^0 \eta _x - p(y-x) (\eta _y -\eta _x)^2,\)

  2. (ii)

    \(L_N^r (\eta _x \eta _y) = \eta _x L_N^r \eta _y + \eta _y L_N^r \eta _x,\)

  3. (iii)

    \(L_N^\ell (\eta _x \eta _y) = \eta _x L_N^\ell \eta _y + \eta _y L_N^\ell \eta _x.\)

Proof

For (i) we have, by definition of \(L_N^0\), that

$$\begin{aligned} \begin{aligned} L_N^0 (\eta _x \eta _y) =&\, \frac{1}{2}\sum _{{\bar{x}},{\bar{y}}\in \Lambda _{N}}p({\bar{y}}-{\bar{x}})\left[ (\sigma ^{{\bar{x}},{\bar{y}}}\eta )_{x}(\sigma ^{{\bar{x}},{\bar{y}}}\eta )_{y}-\eta _{x}\eta _{y}\right] \\ =&\,\frac{1}{2}\sum _{{\bar{x}},{\bar{y}}\in \Lambda _{N}}p({\bar{y}}-{\bar{x}})\left[ ((\sigma ^{{\bar{x}},{\bar{y}}}\eta )_{x}\eta _{y}-\eta _{x}\eta _{y})+((\sigma ^{{\bar{x}},{\bar{y}}}\eta )_{y}\eta _{x}-\eta _{x}\eta _{y})\right. \\&\left. +\,(\sigma ^{{\bar{x}},{\bar{y}}}\eta )_{x}(\sigma ^{{\bar{x}},{\bar{y}}}\eta )_{y}-(\sigma ^{{\bar{x}},{\bar{y}}}\eta )_{x}\eta _{y}-(\sigma ^{{\bar{x}},{\bar{y}}}\eta )_{y}\eta _{x}+\eta _{x}\eta _{y}\right] \\ =&\,\eta _x L_N^0 \eta _y \\&+\, \eta _y L_N^0 \eta _x + \frac{1}{2}\sum _{{\bar{x}},{\bar{y}}\in \Lambda _{N}}p({\bar{y}}-{\bar{x}})\left[ (\sigma ^{{\bar{x}},{\bar{y}}}\eta )_{x}-\eta _{x}\right] \left[ (\sigma ^{{\bar{x}},{\bar{y}}}\eta )_{y}-\eta _{y}\right] \\ =&\, \eta _x L_N^0 \eta _y + \eta _y L_N^0 \eta _x - p(y-x) (\eta _y -\eta _x)^2. \end{aligned} \end{aligned}$$

In order to prove (ii), note that \(\left[ (\sigma ^{\bar{x}}\eta )_{x}-\eta _{x}\right] \left[ (\sigma ^{\bar{x}}\eta )_{y}-\eta _{y}\right] \) is equal to zero, for all \({\bar{x}} \in {{\mathbb {Z}}}\). Thus, by definition of \(L_N^r\), we have that

$$\begin{aligned} \begin{aligned} L_N^r (\eta _x \eta _y)&=\sum _{{\bar{x}}\in \Lambda _{N},{\bar{y}}\ge N}p({\bar{y}}-{\bar{x}})\left[ \eta _{{\bar{x}}}(1-\beta )+(1-\eta _{{\bar{x}}})\beta \right] \left[ (\sigma ^{{\bar{x}}}\eta )_{x}(\sigma ^{{\bar{x}}}\eta )_{y}-\eta _{x}\eta _{y}\right] \\&= \eta _x L_N^r \eta _y + \eta _y L_N^r \eta _x \\&\quad +\,\sum _{{\bar{x}}\in \Lambda _{N},{\bar{y}}\ge N}p({\bar{y}}-{\bar{x}})\\&\qquad \left[ \eta _{{\bar{x}}}(1-\beta )+(1-\eta _{{\bar{x}}})\beta \right] \left[ (\sigma ^{{\bar{x}}}\eta )_{x}-\eta _{x}\right] \left[ (\sigma ^{{\bar{x}}}\eta )_{y}-\eta _{y}\right] \\&=\eta _x L_N^r \eta _y + \eta _y L_N^r \eta _x. \end{aligned} \end{aligned}$$

The proof of the third expression is analogous. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardin, C., Gonçalves, P. & Jiménez-Oviedo, B. A Microscopic Model for a One Parameter Class of Fractional Laplacians with Dirichlet Boundary Conditions. Arch Rational Mech Anal 239, 1–48 (2021). https://doi.org/10.1007/s00205-020-01549-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01549-9

Navigation