Skip to main content
Log in

On Microscopic Derivation of a Fractional Stochastic Burgers Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We derive, from a class of asymmetric mass-conservative interacting particle systems on \({\mathbb{Z}}\), with long-range jump rates of order | · |−(1+α) for 0 < α < 2, different continuum fractional SPDEs. More specifically, we show the equilibrium fluctuations of the hydrodynamics mass density field of zero-range processes, depending on the structure of the asymmetry, and whether the field is translated with process characteristics velocity, are governed in various senses by types of fractional stochastic heat or Burgers equations. The main result: suppose the jump rate is such that its symmetrization is long-range but its (weak) asymmetry is nearest-neighbor. Then, when α < 3/2, the fluctuation field in space-time scale 1/α : 1, translated with process characteristic velocity, irrespective of the strength of the asymmetry, converges to a fractional stochastic heat equation, the limit also for the symmetric process. However, when α ≥ 3/2 and the strength of the weak asymmetry is tuned in scale 1 – 3/2α, the associated limit points satisfy a martingale formulation of a fractional stochastic Burgers equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amir G., Corwin I., Quastel J.: Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions. Commun. Pure Appl. Math. 64, 466–537 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andjel E.: Invariant measures for the zero range process. Ann. Probab. 10, 525–547 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Assing S.: A rigorous equation for the Cole-Hopf solution of the conservative KPZ dynamics. Stoch PDE: Anal. Comp. 1, 365–388 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Baik, J., Ferrari, P.L., Peche, S.: Convergence of the two-point function of the stationary TASEP. In: Singular Phenomena and Scaling in Mathematical Models, pp. 91–100. Springer, New York (2014)

  5. Balázs M., Seppäläinen T.: Order of current variance and diffusivity in the asymmetric simple exclusion process. Ann. Math. 171, 1237–1265 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Becnel, J.: The Schwartz space: a background to white noise analysis. LSU Math. Available at http://www.math.lsu.edu/preprint/2004/as20041 (2004)

  7. Becnel, J.: Countably-normed spaces, their dual, and the Gaussian measure (2005). arXiv:math/0407200

  8. Becnel, J., Sen Gupta, A.: White noise analysis: background and a recent application. In: Hui-Hsiung, K., Sengupta, A.N., Sundar, P.(eds.) Infinite Dimensional Stochastic Analysis. Quantum Probability and White Noise Analysis, vol. 22, pp. 24–41 (2007)

  9. Bernardin C.: Fluctuations in the occupation time of a site in the asymmetric simple exclusion process. Ann. Probab. 32, 855–879 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bernardin, C., Goncalves, P., Sethuraman, S.: Occupation times of long-range exclusion and connections to KPZ class exponents. Prob. Theory Relat. Fields. (2015) doi:10.1007/s00440-015-0661-5

  11. Bertini L., Giacomin G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183, 571–607 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Biler P., Funaki T., Woyczynski W.: fractional Burgers equations. J. Diff. Equ. 148, 9–46 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Bojecki T., Gorostiza L.G., Ramaswamy S.: Convergence of S′-valued processes and space-time random fields. J. Funct. Anal. 66, 21–41 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brox T., Rost H.: Equilibrium fluctuations of stochastic particle systems: the role of conserved quantities. Ann. Probab. 12, 742–759 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. Caputo P.: Spectral gap inequalities in product spaces with conservation laws. Stochastic analysis on large scale interacting systems. Adv. Stud. Pure Math. 39, 53–88 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Chang C.C., Landim C., Olla S.: Equilibrium fluctuations of asymmetric simple exclusion processes in d ≥ 3. Probab. Theory Relat. Fields. 119, 381–409 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Corwin I.: The Kardar-Parisi-Zhang equation and universality class. Random Matrices Theory Appl. 1, 76 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dittrich P., Gärtner J.: A central limit theorem for the weakly asymmetric simple exclusion process. Math. Nachr. 151, 75–93 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dawson D., Gorostiza L.: Generalized solutions of a class of nuclear-space-valued stochastic evolution equations. Appl. Math. Optim. 22, 163–241 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dawson, D., Gorostiza, L.: Generalized solutions of stochastic evolution equations. In: Stochastic Partial Differential Equations and Applications, II (Trento, 1988), Lecture Notes in Math, vol. 1390, pp. 53–65 (1990)

  21. Evans M.R., Hanney T.: Nonequilibrium statistical mechanics of the zero-range process and related models. J. Phys. A: Math. Gen. 38, 195–240 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Funaki T., Quastel J.: KPZ equation, its renormalization and invariant measures. Stoch. PDE: Anal. Comp. 3, 159–220 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Goncalves P., Jara M.: Nonlinear fluctuations of weakly asymmetric interacting particle systems. Arch. Ration. Mech. Anal. 212, 597–644 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Goncalves, P., Jara, M.: Density fluctuations for exclusion processes with long jumps (2015). arXiv:1503.05838v1

  25. Goncalves P., Jara M., Sethuraman S.: A stochastic Burgers equation from a class of microscopic interactions. Ann. Probab. 43, 286–338 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs (2012). arXiv:1210.2684

  27. Gubinelli M., Jara M.: Regularlization by noise and stochastic Burgers equations. SPDEs Anal. Comput. 1, 325–350 (2013)

    MATH  MathSciNet  Google Scholar 

  28. Hairer M.: Solving the KPZ equation. Ann. Math. 178, 559–664 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hairer M.: A theory of regularity structures. Invent. Math. 198, 269–504 (2014)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Itô K., McKean H.P.: Diffusion Processes and Their Sample Paths. Springer-Verlag, Berlin (1965)

    Book  MATH  Google Scholar 

  31. Jacod, J., Shiryaev, A.: Limit Theorems for Stochastic Processes. Grundlehren der Mathematichen Wissenschaften, vol. 288. Springer, Berlin (2003)

  32. Jara, M.: Hydrodynamic limit of particle systems with long jumps (2009). arXiv:0805.1326v2

  33. Jara, M.: Current and density fluctuations for interacting particle systems with anomalous diffusive behavior (2009). arXiv:0901.0229v1

  34. Karch G., Woyczynski W.: fractional Hamilton-Jacobi-KPZ equations. Trans. AMS. 360, 2423–2442 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. Kipnis C., Landim C.: Scaling Limits of Interacting Particle Systems. Springer-Verlag, New York (1999)

    Book  MATH  Google Scholar 

  36. Khoshnevisan, D.: Analysis of stochastic partial differential equations. In: CBMS Regional Conference Series in Mathematics, vol. 119. American Mathematical Society, Providence, RI (2014)

  37. Kupiainen, A.: Renormalization group and stochastic PDEs. Annales Henri Poincaré online first (2015). arXiv:1410.3094

  38. Liggett T.: Interacting Particle Systems. Springer-Verlag, New York (1985)

    Book  MATH  Google Scholar 

  39. Mitoma I.: Tightness of Probabilities on \({{C([0, 1], \mathcal{Y}^\prime )}}\) and \({{D([0, 1], \mathcal{Y}^\prime )}}\). Ann. Probab. 11, 989–999 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  40. Morris B.: Spectral gap for the zero-range process with constant rate. Ann. Probab. 34, 1645–1664 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  41. Nagahata Y.: Spectral gap for zero-range processes with jump rate g(x) = x γ. Stoch. Proc. Appl. 120, 949–958 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  42. Quastel J.: Private communication (2014)

  43. Quastel, J., Valko, B.: A note on the diffusivity of finite-range asymmetric exclusion processes on \({\mathbb{Z}}\). In: Sidoravicius, V., Vares M.E. (eds.) In and Out of Equilibrium 2, Progress in Probability, vol. 60, pp. 543–550. Birkhauser, Basel (2008)

  44. Ravishankar K.: Fluctuations from the hydrodynamical limit for the symmetric simple exclusion in \({{\mathbb{Z}^{d}}}\). Stoch. Proc. Appl. 42, 31–37 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  45. Sasamoto T., Spohn H.: One-dimensional KPZ equation: an exact solution and its universality. Phys. Rev. Lett. 104, 4 (2010)

    Article  Google Scholar 

  46. Sethuraman S., Varadhan S.R.S., Yau H.T.: Diffusive limit of a tagged particle in asymmetric simple exclusion processes. Commun. Pure Appl. Math. 53, 972–1006 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  47. Sethuraman S.: On extremal measues for conservative particle systems. Ann. IHP Prob. Stat. 37, 139–154 (2001)

    MATH  MathSciNet  Google Scholar 

  48. Spohn H.: Large Scale Dynamics of Interacting Particles. Springer-Verlag, Berlin (1991)

    Book  MATH  Google Scholar 

  49. Treves F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, New York (1967)

    MATH  Google Scholar 

  50. Vazquez J.L.: Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete Continuous Dyn. Syst. Ser. S 7, 857–885 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  51. Walsh, J.B.: An Introduction to Stochastic Partial Differential Equations. Ecole d’ete de probabilites de Saint-Flour, XIV 1984, Lecture Notes in Math, vol. 1180, pp. 265–439. Springer, Berlin (1986)

  52. Woycyznski, W.: Burgers-KPZ Turbulence: Gottingen Lectures. Lecture Notes in Mathematics, vol. 1700. Springer, Berlin (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunder Sethuraman.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethuraman, S. On Microscopic Derivation of a Fractional Stochastic Burgers Equation. Commun. Math. Phys. 341, 625–665 (2016). https://doi.org/10.1007/s00220-015-2524-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2524-4

Keywords

Navigation