Skip to main content
Log in

Effects of Soft Interaction and Non-isothermal Boundary Upon Long-Time Dynamics of Rarefied Gas

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In the paper, assuming that the motion of rarefied gases in a bounded domain is governed by the angular cutoff Boltzmann equation with diffuse reflection boundary, we study the effects of both soft intermolecular interaction and non-isothermal wall temperature upon the long-time dynamics of solutions to the corresponding initial boundary value problem. Specifically, we are devoted to proving the existence and dynamical stability of stationary solutions whenever the boundary temperature has suitably small variations around a positive constant. For the proof of existence, we introduce a new mild formulation of solutions to the steady boundary-value problem along the speeded backward bicharacteristic, and develop the uniform estimates on approximate solutions in both \(L^2\) and \(L^\infty \). Such mild formulation proves to be useful for treating the steady problem with soft potentials even over unbounded domains. In showing the dynamical stability, a new point is that we can obtain the sub-exponential time-decay rate in \(L^\infty \) without losing any velocity weight, which is actually quite different from the classical results, such as those in Caflisch (Commun Math Phys 74:97–109, 1980) and Strain and Guo (Arch Ration Mech Anal 187:287–339, 2008), for the torus domain and essentially due to the diffuse reflection boundary and the boundedness of the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aoki, K., Golse, F., Kosuge, S.: The steady Boltzmann and Navier–Stokes equations. Bull. Inst. Math. Acad. Sin. 10(2), 205–257, 2015

    MathSciNet  MATH  Google Scholar 

  2. Arkeryd, L., Cercignani, C.: A global existence theorem for the initial-boundary value problem for the Boltzmann equation when the boundaries are not isothermal. Arch. Ration. Mech. Anal. 125(3), 271–287, 1993

    Article  MathSciNet  MATH  Google Scholar 

  3. Arkeryd, L., Cercignani, C., Illner, R.: Measure solutions of the steady Boltzmann equation in a slab. Commun. Math. Phys. 142(2), 285–296, 1991

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Arkeryd, L., Esposito, R., Marra, R., Nouri, A.: Stability of the laminar solution of the Boltzmann equation for the Benard problem. Bull. Inst. Math. Acad. Sin. 3(1), 51–97, 2008

    MathSciNet  MATH  Google Scholar 

  5. Arkeryd, L., Maslova, N.: On diffuse reflection at the boundary for the Boltzmann equation and related equations. J. Stat. Phys. 77(5–6), 1051–1077, 1994

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Arkeryd, L., Nouri, A.: Boltzmann asymptotics with diffuse reflection boundary condition. Monatshefte Math. 123, 285–298, 1997

    Article  MathSciNet  MATH  Google Scholar 

  7. Arkeryd, L., Nouri, A.: \(L^1\) solutions to the stationary Boltzmann equation in a slab. Ann. Fac. Sci. Toulouse Math. (6) 9(3), 375–413, 2000

    Article  MathSciNet  MATH  Google Scholar 

  8. Arkeryd, L., Nouri, A.: The stationary Boltzmann equation in \({\mathbb{R }}^n\) with given indata. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1(2), 359–385, 2002

    MathSciNet  MATH  Google Scholar 

  9. Briant, M., Guo, Y.: Asymptotic stability of the Boltzmann equation with Maxwell boundary conditions. J. Differ. Equ. 261(12), 7000–7079, 2016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Caflisch, R.E.: The Boltzmann equation with a soft potential. I. Linear, spatially-homogeneous. Commun. Math. Phys. 74, 71–95, 1980

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Caflisch, R.E.: The Boltzmann equation with a soft potential. II. Nonlinear, spatially-periodic. Commun. Math. Phys. 74, 97–109, 1980

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Cercignani, C.: On the initial-boundary value problem for the Boltzmann equation. Arch. Ration. Mech. Anal. 116, 307–315, 1992

    Article  MathSciNet  MATH  Google Scholar 

  13. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, New York 1994

    Book  MATH  Google Scholar 

  14. Chen, C.-C., Chen, I.-K., Liu, T.-P., Sone, Y.: Thermal transpiration for the linearized Boltzmann equation. Commun. Pure Appl. Math. 60(2), 147–163, 2007

    Article  MathSciNet  MATH  Google Scholar 

  15. Desvillettes, L.: Convergence to equilibrium in large time for Boltzmann and B.G.K. equations. Arch. Ration. Mech. Anal. 110(1), 73–91, 1990

    Article  MathSciNet  MATH  Google Scholar 

  16. Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159, 243–316, 2005

    Article  MathSciNet  MATH  Google Scholar 

  17. DiPerna, R.J., Lions, P.-L.: On the Cauchy problem for Boltzmann equation: global existence and weak stability. Ann. Math. 130, 321–366, 1989

    Article  MathSciNet  MATH  Google Scholar 

  18. Duan, R.J., Huang, F.M., Wang, Y., Yang, T.: Global well-posedness of the Boltzmann equation with large amplitude initial data. Arch. Ration. Mech. Anal. 225(1), 375–424, 2017

    Article  MathSciNet  MATH  Google Scholar 

  19. Duan, R.J., Wang, Y.: The Boltzmann equation with large-amplitude initial data in bounded domains. Adv. Math. 343, 36–109, 2019

    Article  MathSciNet  MATH  Google Scholar 

  20. Duan, R.J., Yang, T., Zhao, H.J.: The Vlasov–Poisson–Boltzmann system for soft potentials. Math. Models Methods Appl. Sci. 23(6), 979–1028, 2013

    Article  MathSciNet  MATH  Google Scholar 

  21. Esposito, R., Guo, Y., Kim, C., Marra, R.: Non-isothermal boundary in the Boltzmann theory and Fourier law. Commun. Math. Phys. 323, 177–239, 2013

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Esposito, R., Guo, Y., Kim, C., Marra, R.: Stationary solutions to the Boltzmann equation in the hydrodynamic limit. Ann. PDE 4(1), Art. 1, 2018

    Article  MathSciNet  MATH  Google Scholar 

  23. Esposito, R., Lebowitz, J.L., Marra, R.: Hydrodynamic limit of the stationary Boltzmann equation in a slab. Commun. Math. Phys. 160(1), 49–80, 1994

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Esposito, R., Lebowitz, J.L., Marra, R.: The Navier–Stokes limit of stationary solutions of the nonlinear Boltzmann equation. J. Stat. Phys. 78, 389–412, 1995

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Glassey, R.T.: The Cauchy Problem in Kinetic Theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia 1996

    Book  MATH  Google Scholar 

  26. Guiraud, J.P.: Probleme aux limites intérieur pour l’équation de Boltzmann linéaire. J. de Méc. 9(3), 183–231, 1970

    MATH  Google Scholar 

  27. Guiraud, J.P.: Probleme aux limites intérieur pour l’équation de Boltzmann en régime stationnaire, faiblement non linéaire. J. de Méc. 11(2), 443–490, 1972

    MATH  Google Scholar 

  28. Guo, Y.: Classical solutions to the Boltzmann equation for molecules with an angular cutoff. Arch. Ration. Mech. Anal. 169(4), 305–353, 2003

    Article  MathSciNet  MATH  Google Scholar 

  29. Guo, Y.: Decay and continuity of the Boltzmann equation in Bounded domains. Arch. Ration. Mech. Anal. 197, 713–809, 2010

    Article  MathSciNet  MATH  Google Scholar 

  30. Guo, Y., Kim, C., Tonon, D., Trescases, A.: Regularity of the Boltzmann equation in convex domains. Invent. Math. 207(1), 115–290, 2017

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Guo, Y., Liu, S.-Q.: The Boltzmann equation with weakly inhomogeneous data in bounded domain. J. Funct. Anal. 272(5), 2038–2057, 2017

    Article  MathSciNet  MATH  Google Scholar 

  32. Hamdache, K.: Initial-boundary value problems for the Boltzmann equation: global existence of weak solutions. Arch. Ration. Mech. Anal. 119(4), 309–353, 1992

    Article  MathSciNet  MATH  Google Scholar 

  33. Kim, C., Lee, D.: The Boltzmann equation with specular boundary condition in convex domains. Commun. Pure Appl. Math. 71(3), 411–504, 2018

    Article  MathSciNet  MATH  Google Scholar 

  34. Kuo, H.-W., Liu, T.-P., Tsai, L.-C.: Equilibrating effects of boundary and collision in rarefied gases. Commun. Math. Phys. 328(2), 421–480, 2014

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Kuo, H.-W., Liu, T.-P., Tsai, L.-C.: Free molecular flow with boundary effect. Commun. Math. Phys. 318(2), 375–409, 2013

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Liu, S.-Q., Yang, X.-F.: The initial boundary value problem for the Boltzmann equation with soft potential. Arch. Ration. Mech. Anal. 233(1), 463–541, 2017

    Article  MathSciNet  MATH  Google Scholar 

  37. Maslova, N.B.: Nonlinear Evolution Equations, Kinetic Approach. World Scientific, Singapore 1993

    Book  MATH  Google Scholar 

  38. Mischler, S.: Kinetic equations with Maxwell boundary conditions. Ann. Sci. Ec. Norm. Super. 43(5), 719–760, 2010

    Article  MathSciNet  MATH  Google Scholar 

  39. Sone, Y.: Molecular Gas Dynamics: Theory, Techniques, and Applications. Birkhauser, Boston 2007

    Book  MATH  Google Scholar 

  40. Strain, R.M.: Asymptotic stability of the relativistic Boltzmann equation for the soft potentials. Commun. Math. Phys. 300(2), 529–597, 2010

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Strain, R.M.: Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinet. Relat. Models 5, 583–613, 2012

    Article  MathSciNet  MATH  Google Scholar 

  42. Strain, R.M., Guo, Y.: Almost exponential decay near Maxwellian. Commun. Partial Differ. Equ. 31, 417–429, 2006

    Article  MathSciNet  MATH  Google Scholar 

  43. Strain, R.M., Guo, Y.: Exponential decay for soft potentials near Maxwellian. Arch. Ration. Mech. Anal. 187, 287–339, 2008

    Article  MathSciNet  MATH  Google Scholar 

  44. Ukai, S., Asano, K.: On the Cauchy problem of the Boltzmann equation with a soft potential. Publ. Res. Inst. Math. Sci. 18(2), 477–519, 1982

    Article  MathSciNet  MATH  Google Scholar 

  45. Vidav, I.: Spectra of perturbed semigroups with applications to transport theory. J. Math. Anal. Appl. 30, 264–279, 1970

    Article  MathSciNet  MATH  Google Scholar 

  46. Yu, S.-H.: Stochastic formulation for the initial-boundary value problems of the Boltzmann equation. Arch. Ration. Mech. Anal. 192(2), 217–274, 2009

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Renjun Duan is partially supported by the General Research Fund (Project No. 14302817) and the Direct Grant (Project No. 4053213) from CUHK. Feimin Huang is partially supported by National Center for Mathematics and Interdisciplinary Sciences, AMSS, CAS and NSFC Grant No.11688101. Yong Wang is partly supported by NSFC Grant No. 11771429 and 11688101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renjun Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by T.-P. Liu

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 An Iteration Lemma

Lemma 6.1

Consider a sequence \(\{a_i\}_{i=0}^\infty \) with each \(a_i\geqq 0\). For any fixed \(k\in {\mathbb {N}}_+\), we denote

$$\begin{aligned} A_i^k=\max \{a_i, a_{i+1},\ldots , a_{i+k}\}. \end{aligned}$$

(1) Assume \(D\geqq 0\). If \(a_{i+1+k}\leqq \frac{1}{8} A_i^{k}+D\) for \(i=0,1,\ldots \), then it holds that

$$\begin{aligned} A_i^k\leqq \left( \frac{1}{8}\right) ^{\left[ \frac{i}{k+1}\right] }\cdot \max \{A_0^k, \ A_1^k, \cdots , \ A_k^k \}+\frac{8+k}{7} D,\quad \text{ for }\quad i\geqq k+1. \end{aligned}$$
(6.1)

(2) Let \(0\leqq \eta <1\) with \(\eta ^{k+1}\geqq \frac{1}{4}\). If \(a_{i+1+k}\leqq \frac{1}{8} A_i^{k}+C_k \cdot \eta ^{i+k+1}\) for \(i=0,1,\ldots \), then it holds that

$$\begin{aligned} A_i^k\leqq \left( \frac{1}{8}\right) ^{\left[ \frac{i}{k+1}\right] }\cdot \max \{A_0^k, \ A_1^k, \ldots , \ A_k^k \}+2C_k\frac{8+k}{7} \eta ^{i+k},\quad \text{ for }\quad i\geqq k+1. \end{aligned}$$
(6.2)

Proof

We first show (6.1). By iteration in \(i\geqq 0\), we obtain that

$$\begin{aligned} a_{i+1+2k}&\leqq \frac{1}{8} A_{i+k}^k+D=\frac{1}{8} \max \{a_{i+2k}, a_{i+2k-1},\ldots ,a_{i+k}\}+D\nonumber \\&\leqq \frac{1}{8}\max \left\{ a_{i+2k}, \ A_{i+k-1}^k\right\} +D\leqq \frac{1}{8}\max \left\{ \frac{1}{8} A_{i+k-1}^k+D, \ A_{i+k-1}^k\right\} +D\nonumber \\&\leqq \frac{1}{8} A_{i+k-1}^k+\left( 1+\frac{1}{8}\right) D \cdots \leqq \frac{1}{8} A_{i}^k+\left( 1+\frac{k}{8}\right) D. \end{aligned}$$
(6.3)

Similarly, for all \(j=0,1,\ldots ,k-1\), we also have

$$\begin{aligned} a_{i+1+j+k}\leqq \frac{1}{8} A_{i}^k+\frac{8+k}{8}D. \end{aligned}$$
(6.4)

Therefore, for \(1\leqq \frac{i}{k+1}\in {\mathbb {N}}_+\), it follows from (6.3) and (6.4) that

$$\begin{aligned} A_{i+1+k}^k&=\max \big \{a_{i+1+2k}, \ a_{i+2k},\ \cdots ,\ a_{i+1+k}\big \}\nonumber \\&\leqq \frac{1}{8} A_{i}^k+\frac{8+k}{8}D\leqq \left( \frac{1}{8}\right) ^2A_{i-2(k+1)}^k+\frac{1}{8} \frac{8+k}{8}D+\frac{8+k}{8}D\nonumber \\&=\left( \frac{1}{8}\right) ^2A_{i-2(k+1)}^k+\frac{8+k}{8}\left( 1+\frac{1}{8}\right) D=\cdots \nonumber \\&\leqq \left( \frac{1}{8}\right) ^{\frac{i}{k+1}}A_0^k+\frac{8+k}{8}\left( 1+\frac{1}{8}+\big (\frac{1}{8}\big )^2+\cdots \right) D\nonumber \\&\leqq \left( \frac{1}{8}\right) ^{\frac{i}{k+1}}A_0^k+\frac{8+k}{7}D. \end{aligned}$$
(6.5)

If \(\frac{i}{k+1}\notin {\mathbb {N}}_+\) and \(i=(k+1) \left[ \frac{i}{k+1}\right] +j\) for some \(1\leqq j\leqq k\), then by similar arguments we have

$$\begin{aligned} A_{i+1+k}^k&\leqq \left( \frac{1}{8}\right) ^{\left[ \frac{i}{k+1}\right] +1} A_j^k+\frac{8+k}{7}D. \end{aligned}$$
(6.6)

Hence, from (6.5) and (6.6), we complete the proof of (6.1).

It remains to show (6.2). Noting \(\eta <1\) and by similar arguments as in (6.3) and (6.4), we can get

$$\begin{aligned} a_{i+j+k+1}\leqq \frac{1}{8} A_{i}^k +C_k \left( 1+\frac{k}{8}\right) \eta ^{i+k+1},\ \text{ for } \ 0\leqq j\leqq k. \end{aligned}$$
(6.7)

Hence, for \(1\leqq \frac{i}{k+1}\in {\mathbb {N}}_+\), noting \(\frac{1}{8}\cdot \eta ^{-k-1}\leqq \frac{1}{2}\) and using (6.7), then we have

$$\begin{aligned}&A^k_{i+k+1}=\max \{a_{i+2k+1}, \cdots , a_{i+k+1} \}\leqq \frac{1}{8} A_{i}^k +C_k \left( 1+\frac{k}{8}\right) \eta ^{i+k+1}\nonumber \\&\quad \leqq \cdots \leqq \left( \frac{1}{8}\right) ^{\frac{i}{k+1}} A_0^k+ C_k \left( 1+\frac{k}{8}\right) \eta ^{i+k+1}\cdot \left\{ 1+\frac{1}{8} \eta ^{-k-1}+\left( \frac{1}{8} \eta ^{-k-1}\right) ^2+\cdots \right\} \nonumber \\&\quad \leqq \left( \frac{1}{8}\right) ^{\frac{i}{k+1}} A_0^k+2C_k \left( 1+\frac{k}{8}\right) \eta ^{i+k+1}. \end{aligned}$$
(6.8)

If \(\frac{i}{k+1}\notin {\mathbb {N}}_+\) and \(i=(k+1) \left[ \frac{i}{k+1}\right] +j\) for some \(1\leqq j\leqq k\), then by similar arguments as above, we have

$$\begin{aligned} A^k_{i+k+1} \leqq \left( \frac{1}{8}\right) ^{\left[ \frac{i}{k+1}\right] +1} A_j^k+2C_k \left( 1+\frac{k}{8}\right) \eta ^{i+k+1}. \end{aligned}$$
(6.9)

Thus we prove (6.2) from (6.8) and (6.9). Therefore the proof of lemma 6.1 is complete. \(\quad \square \)

1.2 Local-in-Time Existence

Proposition 6.2

Let w(v) be the weight function defined in (1.9). Assume

$$\begin{aligned} |\theta -\theta _0|_{L^{\infty }(\partial \Omega )}=\delta \ll 1,\quad F_0(x,v)=F_*(x,v)+\mu ^{\frac{1}{2}}(v)f_0(x,v)\geqq 0 \end{aligned}$$

and \( \Vert wf_0\Vert _{L^\infty }:=M_{0}<\infty . \) Then there exists a positive time

$$\begin{aligned} {\hat{t}}:=\bigg [{\hat{C}}\bigg (1+M_{0}\bigg )\bigg ]^{-1} \end{aligned}$$

such that the IBVP (1.1), (1.5) and (1.13) has a unique nonnegative solution

$$\begin{aligned} F(t,x,v)=F_*(x,v)+\mu ^{\frac{1}{2}}(v)f(t,x,v)\geqq 0 \end{aligned}$$

in \([0,{\hat{t}}]\) satisfying

$$\begin{aligned} \sup _{0\leqq t\leqq {\hat{t}}}\bigg \{\Vert wf(t)\Vert _{L^\infty }+|wf(t)|_{L^{\infty }(\gamma )}\bigg \}\leqq 2{\tilde{C}}(M_0+1). \end{aligned}$$

Here \({\tilde{C}}>0\) and \({\hat{C}}>1\) are generic constants independent of \(M_0\). Moreover, if the domain \(\Omega \) is strictly convex, \(\theta (x)\) is continuous over \(\partial \Omega \), the initial data \(F_0(x,v)\) is continuous except on \(\gamma _0\) and satisfies (1.19) then the solution F(txv) is continuous in \([0,{\hat{t}}]\times \{\Omega \times {\mathbb {R}}^3\setminus \gamma _0\}\).

Proof

We consider the following iteration scheme:

$$\begin{aligned} \left\{ \begin{aligned}&\partial _tF^{n+1}+v\cdot \nabla _x F^{n+1}+F^{n+1}\cdot R(F^{n})=Q^+(F^n,F^n),\\&F^{n+1}(t,x,v)\Big |_{t=0}=F_0(x,v)\geqq 0,\\&F^{n+1}(t,x,v)|_{\gamma _-}=\mu _{\theta }(x,v)\int _{n(x)\cdot u>0} F^{n+1}(t,x,u)\{u \cdot n(x)\}\,\mathrm{d}u,\\&F^0(t,x,v)=\mu (v), \end{aligned} \right. \end{aligned}$$
(6.10)

where

$$\begin{aligned} {R}(F^n)(t,x,v)=\int _{{\mathbb {R}}^{3}\times {\mathbb {S}}^{2}}{B}(v-u,\omega )F^n(t,x,u)\,\mathrm{d}u\mathrm{d}\omega . \end{aligned}$$

Let

$$\begin{aligned} f^{n+1}(t,x,v)=\frac{F^{n+1}(t,x,v)-F_{*}(x,v)}{\mu ^{\frac{1}{2}}(v)},\quad h^{n+1}(t,x,v)=wf^{n+1}(t,x,v). \end{aligned}$$

Then the equation of \(h^{n+1}\) reads as

$$\begin{aligned} \left\{ \begin{aligned}&\partial _th^{n+1}+v\cdot \nabla _x h^{n+1}+h^{n+1}\cdot {R}(F^{n})=wK_{*}f^n+w\Gamma ^+(f^n,f^n),\\&h^{n+1}(t,x,v)\Big |_{t=0}=h_0(x,v),\\&h^{n+1}\Big |_{\gamma _-}=\frac{1}{{\tilde{w}}(v)}\int _{\{n(x)\cdot u>0\}} h^{n+1} {\tilde{w}}(u)\,\mathrm{d}\sigma (x)+w(v)\frac{\mu _{\theta }-\mu }{\sqrt{\mu }}\int _{n(x)\cdot u>0}h^{n+1}{\tilde{w}}(u)\,\mathrm{d}\sigma (x),\\&h^{0}(t,x,v)=-wf_*(x,v), \end{aligned} \right. \end{aligned}$$
(6.11)

where we have denoted

$$\begin{aligned} K_{*}f^n:=-\sqrt{\mu }^{-1}\left\{ R(\sqrt{\mu }f^n)F_*+\Gamma ^{+}(\sqrt{\mu }f^{n},F_*)+\Gamma ^+(F_*,\sqrt{\mu }f^n)\right\} . \end{aligned}$$

Now we shall use the induction on \(n=0,1,\ldots \) to show that there exists a positive time \({\hat{t}}_1>0\), independent of n, such that (6.10) or equivalently (6.11) admits a unique mild solution on the time interval \([0,{\hat{t}}_1]\), and the following uniform bound and positivity hold true:

$$\begin{aligned} \Vert h^n(t)\Vert _{L^\infty }+|h^n(t)|_{L^{\infty }(\gamma )}\leqq 2{\tilde{C}}[\Vert h_0\Vert _{L^\infty }+1], \end{aligned}$$
(6.12)

and

$$\begin{aligned} F^n(t,x,v)\geqq 0, \end{aligned}$$
(6.13)

for \(0\leqq t\leqq {\hat{t}}=\left( {\hat{C}}\{1+\Vert h_0\Vert _{L^\infty }\}\right) ^{-1}\) and suitably chosen constants \({\tilde{C}}>0\) and \({\hat{C}}\) independent of t. Thanks to the fact that

$$\begin{aligned} \Vert h^0(t)\Vert _{L^\infty }+|h^0(t)|_{L^\infty (\gamma )}\leqq \Vert wf_*\Vert _{L^\infty }+|wf_*|_{L^\infty (\gamma )}\leqq C\delta , \end{aligned}$$

we see that (6.12) is obviously true for \(n=0\). To proceed, we assume that (6.12) holds true up to \(n\geqq 0\). Since \(F^n\geqq 0\), it holds that \({R}(F^n)\geqq 0\). Then by using a similar argument as in [19, Lemma 3.4], one can construct the solution operator \(G^n(t)\) to the following linear problem:

$$\begin{aligned} \left\{ \begin{aligned}&\partial _th+v\cdot \nabla _x h+{R}(F^n)h=0, \quad t>0,\quad x\in \Omega , \quad v\in {\mathbb {R}}^3,\\&h(t,x,v)|_{t=0}=h_0(x,v),\\&h(t,x,v)\Big |_{\gamma _-}=\frac{1}{{\tilde{w}}(v)}\int _{n(x)\cdot u>0} h(t,x,u) {\tilde{w}}(u)\,\mathrm{d}\sigma (x)+w(v)\frac{\mu _{\theta }-\mu }{\sqrt{\mu }}\int _{n(x)\cdot u>0}h(t,x,u){\tilde{w}}(u)\,\mathrm{d}\sigma (x) \end{aligned} \right. \end{aligned}$$

over \((0,\rho )\) for some universal constant \(\rho >0\) independent of n, provided that \(|\theta -1|_{L^\infty (\partial \Omega )}\) is sufficiently small. Moreover, \(G^n(t)\) satisfies the estimate

$$\begin{aligned} \Vert G^{n}(t)h_0\Vert _{L^{\infty }}+|G^n(t)h_0|_{L^\infty (\gamma )}\leqq C_{\rho }\Vert h_0\Vert _{L^{\infty }}. \end{aligned}$$
(6.14)

Here the constant \(C_\rho >0\) is independent of n. Then applying Duhamel’s formula to (6.11), we have, for \(0<t<\rho ,\) that

$$\begin{aligned} h^{n+1}(t)= {G}^{n}(t,0)h_0+\int _0^t {G}^{n}(t,s)[w K_*f^n(s)+w\Gamma ^+(f^n,f^n)(s)]\mathrm{d}s. \end{aligned}$$
(6.15)

Taking \(L^\infty \)-norm on the both sides of (6.15) and using (2.16) and (6.14), we have

$$\begin{aligned}&\Vert h^{n+1}(t)\Vert _{L^\infty }+|h^{n+1}(t)|_{L^\infty {(\gamma )}}\nonumber \\&\quad \leqq C_\rho \Vert h_0\Vert _{L^\infty }+C_\rho \int _0^t\Vert wK_{*}f^n(s)\Vert _{L^\infty }+\Vert w\Gamma ^+(f^n,f^n)(s)\Vert _{L^\infty }\mathrm{d}s\nonumber \\&\quad \leqq {C} \Vert h_0\Vert _{L^\infty }+C\int _0^t\Vert h^n(s)\Vert _{L^\infty }+\Vert h^n(s)\Vert ^2_{L^\infty }\mathrm{d}s\nonumber \\&\quad \leqq C_{{3}}\Vert h_0\Vert _{L^{\infty }}+C_{{3}}t\cdot \{\sup _{0\leqq s\leqq t}\Vert h^n(s)\Vert _{L^{\infty }}+\sup _{0\leqq s\leqq t}\Vert h^n(s)\Vert _{L^\infty }^2\} \end{aligned}$$
(6.16)

for some constants \(C_3>1\). Now we take \({\tilde{C}}=C_3\) and \({\hat{C}}=8C_3^2\). Then by the induction hypothesis (6.12), for any \( 0<t<{\hat{t}}\), it follows from (6.16) that

$$\begin{aligned} \begin{aligned} \Vert h^{n+1}(t)\Vert _{L^\infty }+|h^{n+1}(t)|_{L^\infty (\gamma )}&\leqq C_{3}\{\Vert h_0\Vert _{L^{\infty }}+1\}\cdot \{1+2C_3t[1+2C_3]\\&\quad \cdot [1+\Vert h_0\Vert _{L^\infty }]\}\\&\leqq 2C_3\{\Vert h_0\Vert _{L^\infty }+1\}. \end{aligned} \end{aligned}$$

This then proves (6.12) for \(n+1\). Next we show the non-negativity (6.13) for \(n+1\). We denote that

$$\begin{aligned} I^{n}(t,s):=\exp \left\{ -\int _s^t[R(F^n)](\tau ,X_{cl}(\tau ),V_{cl}(\tau ))\,\mathrm{d}\tau \right\} \end{aligned}$$

and

$$\begin{aligned} \mathrm{d}\Sigma _{l}^n(\tau ):= & {} \left\{ \prod _{j=l+1}^{k-1}\mathrm{d}\sigma _{j}\right\} \cdot I^n(t_l,\tau )[v_l\cdot n(v_l)]\mathrm{d}v_l\\&\quad \cdot \prod _{j=1}^{l-1}\left\{ I^n(t_{j},t_{j+1})\mu _{\theta }(x_{j+1},v_{j})[v_j\cdot n(x_j)]\mathrm{d}v_{j}\right\} . \end{aligned}$$

Then we have the following mild formulation for \(F^{n+1}\):

(6.17)

for \(t>0\), \(x\in {\bar{\Omega }}\times {\mathbb {R}}^3\setminus \gamma _0\cup \gamma _-\) and integer \(k\geqq 1\). From (6.12), it holds that

$$\begin{aligned} |F^{n+1}(t,x,v)|=\left| F_{*}(x,v)+\mu ^{\frac{1}{2}}(v)\frac{h^{n+1}(t,x,v)}{w(v)}\right| \leqq C(1+\Vert h_0\Vert _{L^{\infty }})\mu ^{\frac{1}{2}}(v) \end{aligned}$$
(6.18)

for some constant \(C>0\). Furthermore, a direct computation shows that

$$\begin{aligned} 0<\mu _{\theta }(x_{j+1},v_{j})\leqq \frac{1}{(1-\delta )^2}\exp \left\{ \frac{\delta |v_j|^2}{2(1-\delta )}\right\} \mu (v_j). \end{aligned}$$

Then similarly as for (4.12), we have, for sufficiently large \(T_0>0\) and for \(k={\hat{C}}_5T_0^{5/4}\), that

$$\begin{aligned} \int _{\prod _{j=1}^{k-2}{\mathcal {V}}_j}{\mathbf {1}}_{\{t_{k-1}>0\}}\prod _{j=1}^{k-2}\mu _{\theta }(x_{j+1},v_j)\{n(x_j)\cdot v_j\}\mathrm{d}v_j\leqq \left( \frac{1}{2}\right) ^{{\hat{C}}_6T_0^{5/4}} \end{aligned}$$

for some generic constant \({\hat{C}}_5>0\) and \({\hat{C}}_6>0\). Then, by (6.17) and (6.18), we have

$$\begin{aligned} \begin{aligned} F^{n+1}&\geqq -C\mu _\theta (x_{1},v)\{1+\Vert h_0\Vert _{L^\infty }\} \int _{\prod _{j=1}^{k-2}{\mathcal {V}}_j}{\mathbf {1}}_{\{t_{k-1}>0\}}\\&\quad \prod _{j=1}^{k-2}\mu _{\theta }(x_{j+1},v_j)\{n(x_j)\cdot v_j\}\mathrm{d}v_j\\&\geqq -C\mu _\theta (x_{1},v)\{1+\Vert h_0\Vert _{L^\infty }\}\cdot \left( \frac{1}{2}\right) ^{{\hat{C}}_6T_0^{5/4}}. \end{aligned} \end{aligned}$$
(6.19)

Since \(T_0>0\) can be taken arbitrarily large, we have \(F^{n+1}\geqq 0.\) This then proves (6.12) and (6.13). Finally, with the uniform estimates (6.12) in hand, we can use a similar argument as one in [19, Theorem 4.1] to show that \(h^n,\)\(n=0,1,2\cdots ,\) is a Cauchy sequence in \(L^\infty \). We omit here for brevity. The solution is obtained by taking the limit \(n\rightarrow \infty \). If \(\Omega \) is convex and the compatibility condition (1.19) holds, the continuity is a direct consequence of the \(L^\infty \)-convergence. The uniqueness is standard. The proof of Proposition 6.2 is complete. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, R., Huang, F., Wang, Y. et al. Effects of Soft Interaction and Non-isothermal Boundary Upon Long-Time Dynamics of Rarefied Gas. Arch Rational Mech Anal 234, 925–1006 (2019). https://doi.org/10.1007/s00205-019-01405-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-019-01405-5

Navigation