Skip to main content

Advertisement

Log in

Global Existence Results for Viscoplasticity at Finite Strain

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study a model for rate-dependent gradient plasticity at finite strain based on the multiplicative decomposition of the strain tensor, and investigate the existence of global-in-time solutions to the related PDE system. We reveal its underlying structure as a generalized gradient system, where the driving energy functional is highly nonconvex and features the geometric nonlinearities related to finite-strain elasticity as well as the multiplicative decomposition of finite-strain plasticity. Moreover, the dissipation potential depends on the left-invariant plastic rate, and thus depends on the plastic state variable. The existence theory is developed for a class of abstract, nonsmooth, and nonconvex gradient systems, for which we introduce suitable notions of solutions, namely energy-dissipation-balance and energy-dissipation-inequality solutions. Hence, we resort to the toolbox of the direct method of the calculus of variations to check that the specific energy and dissipation functionals for our viscoplastic models comply with the conditions of the general theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel 2005

  2. Ambrosio L.: Minimizing movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 19, 191–246 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Antman, S.S.: Nonlinear problems of elasticity, volume 107 of Applied Mathematical Sciences. Springer, New York 1995

  4. Attouch, H.: Variational Convergence of Functions and Operators. Pitman Advanced Publishing Program, Pitman 1984

  5. Ball J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63(4), 337–403 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ball, J.M.: Minimizers and the Euler–Lagrange equations. In: Trends and Applications of Pure Mathematics to Mechanics (Palaiseau, 1983), volume 195 of Lecture Notes in Physics, pp. 1–4. Springer, Berlin 1984

  7. Ball, J.M.: Some open problems in elasticity. In: Newton, P., Holmes, P., Weinstein, A. (eds.) Geometry, Mechanics, and Dynamics, pp. 3–59. Springer, New York 2002

  8. Bauman P., Owen N.C., Phillips D.: Maximum principles and a priori estimates for a class of problems from nonlinear elasticity. Ann. Inst. Henri Poincaré Anal. Non Linéaire 8(2), 119–157 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Brenier Y.: Connections between optimal transport, combinatorial optimization and hydrodynamics. ESAIM Math. Model. Numer. Anal. 49(6), 1593–1605 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carstensen, C., Hackl, K., Mielke, A.: Non-convex potentials and microstructures in finite-strain plasticity. Proc. R. Soc. Lond. Ser. A 458(2018), 299–317 2002

  11. Ciarlet P.G., Nečas J.: Injectivity and self-contact in nonlinear elasticity. Arch. Ration. Mech. Anal. 97(3), 171–188 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Conti S., Ortiz M.: Dislocation microstructures and the effective behavior of single crystals. Arch. Ration. Mech. Anal. 176(1), 103–147 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Conti S., Theil F.: Single-slip elastoplastic microstructures. Arch. Ration. Mech. Anal. 178, 125–148 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dal Maso G., Lazzaroni G.: Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. Henri Poincare Anal. Non Linear 27(1), 257–290 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Dal Maso G., Francfort G., Toader R.: Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176, 165–225 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. De Giorgi E., Marino A., Tosques M.: Problems of evolution in metric spaces and maximal decreasing curve. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 68(3), 180–187 (1980)

    MathSciNet  MATH  Google Scholar 

  17. Eisen G.: A selection lemma for sequences of measurable sets, and lower semicontinuity of multiple integrals. Manuscr. Math. 27, 73–79 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frémond M.: Non-smooth Thermomechanics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  19. Francfort G., Mielke A.: Existence results for a class of rate-independent material models with nonconvex elastic energies. J. Reine Angew. Math. 595, 55–91 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Halphen B., Nguyen Q.S.: Sur les matériaux standards généralisés. J. Méc. 14, 39–63 (1975)

    MATH  Google Scholar 

  21. Healey T.J., Krömer S.: Injective weak solutions in second-gradient nonlinear elasticity. ESAIM Control Optim. Calc. Var. 15, 863–871 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hackl K., Heinz S., Mielke A.: A model for the evolution of laminates in finite-strain elastoplasticity. Z. Angew. Math. Mech. (ZAMM) 92(11-12), 888–909 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ioffe A.D.: On lower semicontinuity of integral functionals. I. SIAM J. Control Optim. 15(4), 521–538 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Knees D., Zanini C., Mielke A.: Crack growth in polyconvex materials.. Physica D 239, 1470–1484 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Lee E.H.: Elastic-plastic deformation at finite strains. J. Appl. Mech. 36, 1–6 (1969)

    Article  ADS  MATH  Google Scholar 

  26. Marsden, J., Hughes, T.J.: Mathematical Foundations of Elasticity. Dover Publications Inc., New York, 1994. (Corrected reprint of the 1983 original)

  27. Mainik A., Mielke A.: Global existence for rate-independent gradient plasticity at finite strain. J. Nonlinear Sci. 19(3), 221–248 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Maugin G.A.: The Thermomechanics of Plasticity and Fracture. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  29. Miehe C.: Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. Comput. Methods Appl. Mech. Eng. 192(5–6), 559–591 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Mielke A.: Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Contin. Mech. Thermodyn. 15, 351–382 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Mielke A.: Formulation of thermoelastic dissipative material behavior using GENERIC. Contin. Mech. Thermodyn. 23(3), 233–256 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Mielke, A.: On evolutionary \({\Gamma}\)-convergence for gradient systems (Ch. 3). In: Muntean, A., Rademacher, J., Zagaris, A. (eds). Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity, Lecture Notes in Applied Mathematics and Mechanics, vol. 3, pp. 187–249. Springer, 2016. Proceeding of Summer School in Twente University (June 2012)

  33. Mielke A., Müller S.: Lower semicontinuity and existence of minimizers for a functional in elastoplasticity. ZAMM Z. Angew. Math. Mech. 86(3), 233–250 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mielke, A., Roubíček, T.: Rate-Independent Systems: Theory and Application. Applied Mathematical Sciences, vol. 193. Springer, New York 2015

  35. Mielke A., Roubíček T.: Rate-independent elastoplasticity at finite strain and its numerical approximation. Math. Models Methods Appl. Sci. (M 3 AS) 26(12), 2203–2236 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mielke A., Ortner C., Şengül Y.: An approach to nonlinear viscoelasticity via metric gradient flows. SIAM J. Math. Anal. 46(2), 1317–1347 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mielke A., Rossi R., Savaré G.: Nonsmooth analysis of doubly nonlinear evolution equations. Calc. Var. Part. Differ. Equ. 46(1-2), 253–310 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mühlhaus H.-B., Aifantis E.C.: A variational principle for gradient plasticity. Int. J. Solids Struct. 28(7), 845–857 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ortiz M., Repetto E.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech.Phys. Solids 47(2), 397–462 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Ortiz M., Stainier L.: The variational formulation of viscoplastic constitutive updates. Comput. Methods Appl. Mech. Eng. 171(3-4), 419–444 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Ortiz M., Repetto E., Stainier L.: A theory of subgrain dislocation structures. J. Mech. Phys. Solids 48, 2077–2114 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Reshetnyak Y.: On the stability of conformal maps in multidimensional spaces. Sib. Math. J. 8, 69–85 (1967)

    Article  MATH  Google Scholar 

  43. Rossi R., Mielke A., Savaré G.: A metric approach to a class of doubly nonlinear evolution equations and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) VII(1), 97–169 (2008)

    MathSciNet  MATH  Google Scholar 

  44. Rossi R., Savaré G.: Gradient flows of non convex functionals in Hilbert spaces and applications. ESAIM Control Optim. Calc. Var. 12, 564–614 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Struwe, M.: Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, Berlin 1990

  46. Zaafarani, N., Raabe, D., Singh, R.N., Roters, F., Zaefferer, S.: Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Mater. 54, 18631876 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Mielke.

Additional information

Communicated by C. Dafermos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mielke, A., Rossi, R. & Savaré, G. Global Existence Results for Viscoplasticity at Finite Strain. Arch Rational Mech Anal 227, 423–475 (2018). https://doi.org/10.1007/s00205-017-1164-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1164-6

Navigation