Skip to main content
Log in

Nonsmooth analysis of doubly nonlinear evolution equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we analyze a broad class of abstract doubly nonlinear evolution equations in Banach spaces, driven by nonsmooth and nonconvex energies. We provide some general sufficient conditions, on the dissipation potential and the energy functional, for existence of solutions to the related Cauchy problem. We prove our main existence result by passing to the limit in a time-discretization scheme with variational techniques. Finally, we discuss an application to a material model in finite-strain elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio L.: Minimizing movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 19, 191–246 (1995)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich, 2nd edn. Birkhäuser Verlag, Basel (2008)

  3. Attouch, H.: Variational Convergence for Functions and Operators. Pitman (Advanced Publishing Program), Boston, MA (1984)

  4. Aubin J.-P., Frankowska H.: Set-valued Analysis. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  5. Babadjian, J.-F., Francfort, G., Mora, M.: Quasistatic Evolution in Non-associative Plasticity—The Cap Model. SIAM J. Math. Anal. (to appear) (2011)

  6. Baiocchi, C.: Discretization of evolution variational inequalities. In: Colombini, F., Marino, A., Modica, L., Spagnolo, S. (eds.). Partial Differential Equations and the Calculus of Variations, vol. I, pp. 59–92. Birkhäuser Boston, Boston, MA (1989)

  7. Balder E.J.: A general approach to lower semicontinuity and lower closure in optimal control theory. SIAM J. Control Optim. 22, 570–598 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Balder E.J.: An extension of Prohorov’s theorem for transition probabilities with applications to infinite-dimensional lower closure problems. Rend. Circ. Mat. Palermo (2) 34(1985), 427–447 (1986)

    MathSciNet  Google Scholar 

  9. Balder, E.J.: Lectures on young measure theory and its applications in economics. Rend. Istit. Mat. Univ. Trieste, 31, pp. 1–69. Workshop on Measure Theory and Real Analysis (Italian) (Grado, 1997) (2000)

  10. Ball J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63, 337–403 (1976)

    Article  MathSciNet  Google Scholar 

  11. Ball, J.M.: A version of the fundamental theorem for Young measures, in PDEs and continuum models of phase transitions (Nice, 1988), vol. 344 of Lecture Notes in Phys, pp. 207–215. Springer, Berlin (1989)

  12. Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam, 1973. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50)

  13. Castaing C., Valadier M.: Convex analysis and measurable multifunctions. Lecture Notes in Mathematics, vol. 580. Springer, Berlin (1977)

    Google Scholar 

  14. Castaing, C., Raynaud de Fitte, P., Valadier, M.: Young measures on topological spaces, vol. 571 of Mathematics and its Applications. Kluwer Academic Publisher, Dordrecht (2004)

  15. Colli P.: On some doubly nonlinear evolution equations in Banach spaces. Jpn. J. Indust. Appl. Math. 9, 181–203 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Colli P., Visintin A.: On a class of doubly nonlinear evolution equations. Commun. Partial Differ. Equ. 15, 737–756 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Crandall M.G., Liggett T.M.: Generation of semi-groups of nonlinear transformations on general Banach spaces. Am. J. Math. 93, 265–298 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  18. De Giorgi, E.: New problems on minimizing movements. In: Baiocchi, C., Lions, J.L. (eds.) Boundary Value Problems for PDE and Applications. Masson, pp. 81–98 (1993)

  19. De Giorgi E., Marino A., Tosques M.: Problems of evolution in metric spaces and maximal decreasing curve. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 68, 180–187 (1980)

    MathSciNet  MATH  Google Scholar 

  20. DeSimone A.: Energy minimizers for large ferromagnetic bodies. Arch. Ration. Mech. Anal. 125, 99–143 (1993)

    Article  MathSciNet  Google Scholar 

  21. Dunford, N., Schwartz, J.T.: Linear Operators. Part I. Interscience Publishers, a division of John Wiley & Sons, Inc., New York (1958)

  22. Ebmeyer C., Frehse J.: Mixed boundary value problems for non-linear elliptic equations in multidimensional non-smooth domains. Math. Nachrichten 203, 47–74 (1999)

    MathSciNet  MATH  Google Scholar 

  23. Ekeland, I., Temam, R.: Analyse Convexe et Problèmes Variationnels, Dunod, Gauthier-Villars, Paris (1974)

  24. Francfort G., Mielke A.: Existence results for a class of rate-independent material models with nonconvex elastic energies. J. Reine Angew. Math. 595, 55–91 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Frémond M.: Non-smooth Thermomechanics. Springer, Berlin (2002)

    MATH  Google Scholar 

  26. Govindjee, S., Mielke, A., Hall, G.: The free-energy of mixing for n-variant martensitic phase transformations using quasi–convex analysis. J. Mech. Phys. Solids 50, 1897–1922 (2002). Erratum and Correct Reprinting: 51(4) 2003, pp. 763 & I–XXVI

    Google Scholar 

  27. Ioffe A.D.: On lower semicontinuity of integral functionals. I. . SIAM J. Control Optim. 15, 521–538 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kružík, M., Mielke A., Roubíček, T.: Modelling of microstructure and its evolution in shape-memory-alloy single-crystals, in particular in CuAlNi. Meccanica 40, 389–418 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Luckhaus S.: Solutions for the two-phase Stefan problem with the Gibbs-Thomson Law for the melting temperature. Euro. J. Appl. Math. 1, 101–111 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mainik A., Mielke A.: Global existence for rate-independent gradient plasticity at finite strain. J. Nonlinear Sci. 19, 221–248 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mielke A.: Energetic formulation of multiplicative elasto–plasticity using dissipation distances. Cont. Mech. Thermodyn. 15, 351–382 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mielke, A.: Evolution in rate-independent systems (Ch. 6). In: Dafermos, C., Feireisl, E. (eds.) Handbook of Differential Equations, Evolutionary Equations, vol. 2. Elsevier B.V., Amsterdam, pp. 461–559 (2005)

  33. Mielke, A.: A mathematical framework for generalized standard materials in the rate-independent case. In Multifield Problems in Solid and Fluid Mechanics, vol. 28 of Lect. Notes Appl. Comput. Mech., pp. 399–428. Springer, Berlin (2006)

  34. Mielke A., Roubíček T.: Rate-independent damage processes in nonlinear elasticity. M3AS Math. Models Methods Appl. Sci. 3(16), 177–209 (2006)

  35. Mielke, A., Theil, F., Levitas, V.I.: A variational formulation of rate–independent phase transformations using an extremum principle, Arch. Rational Mech. Anal., 162 (2002), pp. 137–177. (Essential Science Indicator: Emerging Research Front, August 2006)

  36. Mielke A., Rossi R., Savaré G.: Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete Contin. Dyn. Syst. 25, 585–615 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mielke, A., Rossi, R., Savaré, G.: BV solutions and viscosity approximations of rate-independent systems. ESAIM Control Optim. Calc. Var. Published online since 23.12.2010

  38. Mielke, A., Rossi, R., Savaré, G.: BV solutions to infinite-dimensional rate-independent systems. In preparation (2011)

  39. Mordukhovich B.S.: Nonsmooth analysis with nonconvex generalized differentials and conjugate mappings. Dokl. Akad. Nauk BSSR 28, 976–979 (1984)

    MathSciNet  MATH  Google Scholar 

  40. Mordukhovich, B.S.: Variational analysis and generalized differentiation. I, vol. 330 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin, 2006. Basic theory

  41. Nochetto R.H., Savaré G., Verdi C.: A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Commun. Pure Appl. Math. 53, 525–589 (2000)

    Article  MATH  Google Scholar 

  42. Reshetnyak Y.: On the stability of conformal maps in multidimensional spaces. Siberian Math. J. 8, 69–85 (1967)

    Article  Google Scholar 

  43. Rossi R., Savaré G.: Gradient flows of non convex functionals in Hilbert spaces and applications. ESAIM Control Optim. Calc. Var. 12, 564–614 (2006) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rossi R., Mielke A., Savaré G.: A metric approach to a class of doubly nonlinear evolution equations and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) VII, 97–169 (2008)

    Google Scholar 

  45. Rossi R., Segatti A., Stefanelli U.: Attractors for gradient flows of non convex functionals and applications to quasistationary phase field models. Arch. Ration. Mech. Anal. 187, 91–135 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Rossi R., Segatti A., Stefanelli U.: Global attractors for gradient flows in metric spaces. J. Math. Pures Appl. 95, 205–244 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Rulla J.: Error analysis for implicit approximations to solutions to Cauchy problems. SIAM J. Numer. Anal. 33, 68–87 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  48. Savaré G.: Weak solutions and maximal regularity for abstract evolution inequalities. Adv. Math. Sci. Appl. 6, 377–418 (1996)

    MathSciNet  MATH  Google Scholar 

  49. Savaré G.: Regularity results for elliptic equations in Lipschitz domains. J. Funct. Anal. 152, 176–201 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  50. Schätzle R.: The quasistationary phase field equations with Neumann boundary conditions. J. Differ. Equ. 162, 473–503 (2000)

    Article  MATH  Google Scholar 

  51. Schimperna G., Segatti A., Stefanelli U.: Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete Contin. Dyn. Syst. 18, 15–38 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. Segatti A.: Global attractor for a class of doubly nonlinear abstract evolution equations. Discrete Contin. Dyn. Syst. 14, 801–820 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  53. Stefanelli U.: The Brezis-Ekeland principle for doubly nonlinear equations. SIAM J. Control Optim. 47, 1615–1642 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  54. Valadier, M.: Young measures. In: Methods of Nonconvex Analysis (Varenna, 1989), pp. 152–188. Springer, Berlin (1990)

  55. Visintin, A.: Models of Phase Transitions. vol. 28 of Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Boston (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Savaré.

Additional information

Communicated by J. Ball.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mielke, A., Rossi, R. & Savaré, G. Nonsmooth analysis of doubly nonlinear evolution equations. Calc. Var. 46, 253–310 (2013). https://doi.org/10.1007/s00526-011-0482-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-011-0482-z

Mathematics Subject Classification (2000)

Navigation