Skip to main content

Energy Estimates, Relaxation, and Existence for Strain-Gradient Plasticity with Cross-Hardening

  • Chapter
Analysis and Computation of Microstructure in Finite Plasticity

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 78))

Abstract

We consider a variational formulation of gradient elasto-plasticity subject to a class of single-slip side conditions, and show how the nonconvexity effects induced by such conditions can be not only resolved mathematically, but also tested physically. We first show that, for a large class of plastic deformations, a given single-slip condition (specification of Burgers’ vectors and slip planes) can be relaxed by introducing a microstructure through a two-stage process of mollification and lamination. This yields a relaxed side condition which only prescribes certain slip planes, and allows for arbitrary slip directions in these planes. The relaxed model should be a useful tool for simulating macroscopic plastic behavior without the need to resolve arbitrarily fine spatial scales. After deriving the relaxed model, we discuss a partial result on the existence of minimizers. Finally, we apply the relaxed model to a specific physical system, in order to be able to compare the analytical results with experiments. In particular, a rectangular shear sample in which only two slip planes are active is clamped at each end, and is subjected to a prescribed horizontal shear, which requires a certain amount of energy. We show that above some critical aspect ratio the energy is strictly positive and below that aspect ratio it is zero. Moreover, in the respective regimes determined by the aspect ratio, we prove energy scaling bounds, expressed in terms of the amount of prescribed shear, and we show that the scalings as well as the critical aspect ratio change radically if the single-slip condition or the strain gradient penalization is neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albin, N., Conti, S., Dolzmann, G.: Infinite-order laminates in a model in crystal plasticity. Proc. Roy. Soc. Edinburgh Sect. A 139(4), 685–708 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anguige, K., Dondl, P.W.: Optimal energy scaling for a shear experiment in single-crystal plasticity with cross-hardening. Z. Angew. Math. Phys. 65(5), 1011–1030 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  3. Anguige, K., Dondl, P.W.: Relaxation of the single-slip condition in strain-gradient plasticity. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 470(2169) (2014)

    Google Scholar 

  4. Bay, B., Hansen, N., Hughes, D.A., Kuhlmann-Wilsdorf, D.: Overview no-96 - evolution of FCC deformation structures in polyslip. Acta Metall. Mater. 40(2), 205–219 (1992)

    Article  Google Scholar 

  5. Cao, G.H., Becker, A.T., Wu, D., Chumbley, L.S., Lograsso, T.A., Russell, A.M., Gschneidner, K.A.: Mechanical properties and determination of slip systems of the B2 YZn intermetallic compound. Acta Mater. 58(12), 4298–4304 (2010)

    Article  Google Scholar 

  6. Conti, S., Dolzmann, G., Klust, C.: Relaxation of a class of variational models in crystal plasticity. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 465(2106), 1735–1742 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Conti, S., Dolzmann, G., Kreisbeck, C.: Relaxation of a model in finite plasticity with two slip systems. Math. Models Methods Appl. Sci. 23(11), 2111–2128 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cermelli, P., Gurtin, M.E.: On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids 49(7), 1539–1568 (2001)

    Article  MATH  Google Scholar 

  9. Carstensen, C., Hackl, K., Mielke, A.: Non-convex potentials and microstructures in finite-strain plasticity. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458(2018), 299–317 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Conti, S., Ortiz, M.: Dislocation microstructures and the effective behavior of single crystals. Arch. Ration. Mech. An. 176(1), 103–147 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Conti, S., Theil, F.: Single-slip elastoplastic microstructures. Arch. Ration. Mech. An. 178(1), 125–148 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dmitrieva, O., Dondl, P.W., Mueller, S., Raabe, D.: Lamination microstructure in shear deformed copper single crystals. Acta Mater. 57(12), 3439–3449 (2009)

    Article  Google Scholar 

  13. Devincre, B., Hoc, T., Kubin, L.P.: Collinear interactions of dislocations and slip systems. Mater. Sci. Engrng. A 400-401, 182–185 (2005)

    Article  Google Scholar 

  14. Devincre, B., Kubin, L., Hoc, T.: Collinear superjogs and the low-stress response of fcc crystals. Scripta Mater. 57(10), 905–908 (2007)

    Article  Google Scholar 

  15. Demir, E., Raabe, D., Roters, F.: The mechanical size effect as a mean-field breakdown phenomenon: Example of microscale single crystal beam bending. Acta Mater. 58(5), 1876–1886 (2010)

    Article  Google Scholar 

  16. Franciosi, P., Berveiller, M., Zaoui, A.: Latent hardening in copper and aluminum single-crystals. Acta Metall. 28(3), 273–283 (1980)

    Article  Google Scholar 

  17. Fokoua, L., Conti, S., Ortiz, M.: Optimal scaling in solids undergoing ductile fracture by void sheet formation. Arch. Ration. Mech. An. 212(1), 331–357 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Franciosi, P., Zaoui, A.: Multislip Tests on Copper-Crystals - a Junctions Hardening Effect. Acta Metall. 30(12), 2141–2151 (1982)

    Article  Google Scholar 

  19. Hansen, B.L., Bronkhorst, C.A., Ortiz, M.: Dislocation subgrain structures and modeling the plastic hardening of metallic single crystals. Model. Simul. Mater. Sc. 18(5), 055001 (2010)

    Article  Google Scholar 

  20. Hughes, D., Chrzan, D., Liu, Q., Hansen, N.: Scaling of misorientation angle distributions. Phys. Rev. Lett. 81(21), 4664–4667 (1998)

    Article  Google Scholar 

  21. Hughes, D.A., Liu, Q., Chrzan, D.C., Hansen, N.: Scaling of microstructural parameters: Misorientations of deformation induced boundaries. Acta Mater. 45(1), 105–112 (1997)

    Article  Google Scholar 

  22. Hildebrand, F., Miehe, C.: Variational phase field modeling of laminate deformation microstructure in finite gradient crystal plasticity. Proc. Appl. Math. Mech. 12(1), 37–40 (2012)

    Article  Google Scholar 

  23. Jin, N.Y., Winter, A.T.: Dislocation-structures in cyclically deformed [001] copper-crystals. Acta Metall. 32(8), 1173–1176 (1984)

    Article  Google Scholar 

  24. Kochmann, D.M., Hackl, K.: The evolution of laminates in finite crystal plasticity: a variational approach. Continuum Mech. Thermodyn. 23(1), 63–85 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kocks, U.F.: Latent hardening and secondary slip in aluminum and silver. Trans. Metall. Soc. AIME 230(5), 1160–1167 (1964)

    Google Scholar 

  26. Kondo, K.: On the geometrical and physical foundations of the theory of yielding. In: Proc. 2nd Japan Nat. Congr. Applied Mechanics, pp. 41–47 (1952)

    Google Scholar 

  27. Lejcek, P.: Grain Boundary Segregation in Metals. Springer Series in Materials Science, vol. 136. Springer Science & Business Media, Heidelberg (2010)

    Google Scholar 

  28. Lee, E.H., Liu, D.T.: Finite-Strain Elastic-Plastic Theory with Application to Plane-Wave Analysis. J. Appl. Phys. 38(1), 19–27 (1967)

    Article  Google Scholar 

  29. Miehe, C.: Microstructure development in standard dissipative solids based on energy minimization. GAMM-Mitt. 29(2), 247–272 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Mielke, A., Müller, S.: Lower semicontinuity and existence of minimizers in incremental finite-strain elastoplasticity. Z. Angew. Math. Mech. 86(3), 233–250 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mainik, A., Mielke, A.: Global existence for rate-independent gradient plasticity at finite strain. J. Nonlinear Sci. 19(3), 221–248 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Nix, W.D., Gibeling, J.C., Hughes, D.A.: Time-dependent deformation of metals. Metall. Trans. A 16(12), 2215–2226 (1985)

    Article  Google Scholar 

  33. Nye, J.F.: Some geometrical relations in dislocated crystals. Acta Metall. 1(2), 153–162 (1953)

    Article  Google Scholar 

  34. Ortiz, M., Repetto, E.A.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 397–462 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  35. Reina, C., Conti, S.: Kinematic description of crystal plasticity in the finite kinematic framework: a micromechanical understanding of F = F e F p. J. Mech. Phys. Solids 67, 40–61 (2014)

    Article  MathSciNet  Google Scholar 

  36. Rasmussen, K.V., Pedersen, O.B.: Fatigue of copper polycrystals at low plastic strain amplitudes. Acta Metall. 28(11), 1467–1478 (1980)

    Article  Google Scholar 

  37. Rodney, D., Phillips, R.: Structure and strength of dislocation junctions: An atomic level analysis. Phys. Rev. Lett. 82(8), 1704–1707 (1999)

    Article  Google Scholar 

  38. Uchic, M., Dimiduk, D., Florando, J., Nix, W.: Sample dimensions influence strength and crystal plasticity. Science 305(5686), 986–989 (2004)

    Article  Google Scholar 

  39. Wu, T.Y., Bassani, J.L., Laird, C.: Latent hardening in single-crystals.1. theory and experiments. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 435, 1–19 (1893)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Anguige .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Anguige, K., Dondl, P.W. (2015). Energy Estimates, Relaxation, and Existence for Strain-Gradient Plasticity with Cross-Hardening. In: Conti, S., Hackl, K. (eds) Analysis and Computation of Microstructure in Finite Plasticity. Lecture Notes in Applied and Computational Mechanics, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-319-18242-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18242-1_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18241-4

  • Online ISBN: 978-3-319-18242-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics