Skip to main content
Log in

Scattering Parabolic Solutions for the Spatial N-Centre Problem

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

For the N-centre problem in the three dimensional space,

$${\ddot{x}} = -\sum_{i=1}^{N} \frac{m_i \,(x-c_i)}{\vert x - c_i \vert^{\alpha+2}}, \qquad x \in {\mathbb{R}}^3 {\setminus} \{c_1,\ldots,c_N\},$$

where \({N \geqq 2}\), \({m_i > 0}\) and \({\alpha \in [1,2)}\), we prove the existence of entire parabolic trajectories having prescribed asymptotic directions. The proof relies on a variational argument of min–max type. Morse index estimates and regularization techniques are used in order to rule out the possible occurrence of collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Coti Zelati, V.: Periodic Solutions of Singular Lagrangian systems, Progress in Nonlinear Differential Equations and their Applications, Vol. 10, Birkhäuser Boston, Inc., Boston 1993

  2. Bahri A., Rabinowitz P.H.: A minimax method for a class of Hamiltonian systems with singular potentials. J. Funct. Anal. 82, 412–428 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barutello V., Terracini S., Verzini G.: Entire parabolic trajectories as minimal phase transitions. Calc. Var. 49, 391–429 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barutello V., Terracini S., Verzini G.: Entire minimal parabolic trajectories: the planar anisotropic Kepler problem. Arch. Ration. Mech. Anal. 207, 583–609 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bolotin, S.V.: Nonintegrability of the problem of n centers for \({n > 2}\) (Russian). Vestnik Moskov. Univ. Ser. I Mat. Mekh., 65–68 (1984)

  6. Bolotin S.V., Negrini P.: Chaotic behavior in the 3-center problem. J. Differ. Equ. 190, 539–558 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bolotin S.V., Negrini P.: Regularization and topological entropy for the spatial n-center problem. Ergodic Theory Dyn. Syst. 21, 383–399 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Castelli, R.: On the variational approach to the one and N-centre problem with weak forces, Ph.D. Thesis, University of Milano-Bicocca, 2009

  9. Chen K.-C.: Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses. Ann. Math. (2) 167, 325–348 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, K.-C., Yu, Y.: Syzygy sequences of the N-center problem. Ergodic Theor. Dyn. Syst. doi:10.1017/etds.2016.37

  11. da Luz A., Maderna E.: On the free time minimizers of the Newtonian N-body problem. Math. Proc. Cambridge Philos. Soc. 156, 209–227 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dimare L.: Chaotic quasi-collision trajectories in the 3-centre problem. Celest. Mech. Dyn. Astron. 107, 427–449 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Dullin H.R., Montgomery R.: Syzygies in the two center problem. Nonlinearity 29, 1212–1237 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Felmer P., Tanaka K.: Hyperbolic-like solutions for singular Hamiltonian systems. NoDEA Nonlinear Differ. Equ. Appl. 7, 43–65 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Felmer P., Tanaka K.: Scattering solutions for planar singular Hamiltonian systems via minimization. Adv. Differ. Equ. 5, 1519–1544 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Fusco G., Gronchi G.F., Negrini P.: Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem. Invent. Math. 185, 283–332 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Granas, A., Dugundji, J.: Fixed point theory, Springer Monographs in Mathematics. Springer, New York 2003

  18. Greco C.: Periodic solutions of a class of singular Hamiltonian systems. Nonlinear Anal. 12, 259–269 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Klein, M., Knauf, A.: Chaotic motion in Coulombic potentials, Mathematical physics, X (Leipzig, 1991). Springer, Berlin 1992

  20. Knauf A.: The n-centre problem of celestial mechanics for large energies. J. Eur. Math. Soc. (JEMS) 4, 1–114 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Maderna E.: On weak KAM theory for N-body problems. Ergodic Theory Dynam. Systems 32, 1019–1041 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Maderna E., Venturelli A.: Globally minimizing parabolic motions in the Newtonian N-body problem. Arch. Ration. Mech. Anal. 194, 283–313 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Marchal C.: How the method of minimization of action avoids singularities. Celest. Mech. Dyn. Astron. 83, 325–353 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Soave N., Terracini S.: Symbolic dynamics for the N-centre problem at negative energies. Discrete Contin. Dyn. Syst. 32, 3245–3301 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Soave N., Terracini S.: Avoiding collisions under topological constraints in variational problems coming from celestial mechanics. J. Fixed Point Theory Appl. 14, 457–501 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sperling, H.J.: The collision singularity in a perturbed two-body problem. Celest. Mech. 1, 213–221 (1969/1970)

  27. Struwe, M.: Variational methods, A Series of Modern Surveys in Mathematics, Vol. 34. Springer, Berlin, 2008

  28. Tanaka K.: A note on generalized solutions of singular Hamiltonian systems. Proc. Am. Math. Soc. 122, 275–284 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tanaka K.: A prescribed energy problem for a singular Hamiltonian system with a weak force. J. Funct. Anal. 113, 351–390 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tanaka K.: Morse indices at critical points related to the symmetric mountain pass theorem and applications. Commun. Partial Differ. Equ. 14, 99–128 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tanaka K.: Noncollision solutions for a second order singular Hamiltonian system with weak force. Ann. Inst. H. Poincaré Anal. Non Linéaire 10, 215–238 (1993)

    MathSciNet  MATH  Google Scholar 

  32. Terracini S., Venturelli A.: Symmetric trajectories for the 2N-body problem with equal masses. Arch. Rat. Mech. Anal. 184, 465–493 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Whittaker, E.T.: A Treatise on the Analytical Dynamics Of Particles and Rigid Bodies: With an introduction to the problem of three bodies, 4th ed. Cambridge University Press, New York 1959

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Terracini.

Additional information

Communicated by P. Rabinowitz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boscaggin, A., Dambrosio, W. & Terracini, S. Scattering Parabolic Solutions for the Spatial N-Centre Problem. Arch Rational Mech Anal 223, 1269–1306 (2017). https://doi.org/10.1007/s00205-016-1057-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-1057-0

Mathematics Subject Classification

Navigation