Skip to main content
Log in

Avoiding collisions under topological constraints in variational problems coming from celestial mechanics

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In a singular potential setting, we generalize a method which allows to show that minimizers under topological constraints of the action functional (or of the Maupertuis one) are collision-free. This methods applies to 3-dimensional problems of celestial mechanics exhibiting a particular cylindrical symmetry, as well as to planar problems of N-centre type, where it gives optimal results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ambrosetti and V. Coti Zelati, Periodic Solutions of Singular Lagrangian Systems. Birkhäuser Boston, Boston, MA, 1993.

  2. V. Barutello, D. L. Ferrario and S. Terracini, On the singularities of generalized solutions to n-body-type problems. Int. Math. Res.Not. IMRN 2008 (2008), Art. ID rnn 069.

  3. Barutello V., Terracini S., Verzini G.: Entire minimal parabolic trajectories: The planar anisotropic Kepler problem. Arch. Ration. Mech. Anal. 207, 583–609 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. H. Brezis, Analyse Fonctionnelle, Théorie et Applications. Colletion Mathématiques Appliquées por la Maîtrise, Massons, Paris, 1983.

  5. R. Castelli, On the variational approach to the one and N-centre problem with weak forces. PhD thesis, University of Milano-Bicocca, 2009.

  6. K.-C. Chen, Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses. Ann. of Math. (2) 167 (2008), 325–348.

  7. Chen K.-C., Lin Y.-C.: On action-minimizing retrograde and prograde orbits of the three-body problem. Comm. Math. Phys. 291, 403–441 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Chenciner, Action minimizing solutions of the Newtonian n-body problem: From homology to symmetry. In Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), Higher Ed. Press, Beijing, 2002, 279–294.

  9. A. Chenciner and A. Venturelli, Minima de l’intégrale d’action du problème newtonien de 4 corps de masses égales dans R 3: Orbites “hip-hop”. Celestial Mech. Dynam. Astronom. 77 (2000), 139–152.

  10. Ferrario D.L.: Transitive decomposition of symmetry groups for the n-body problem. Adv. Math. 213, 763–784 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ferrario D.L., Terracini S.: On the existence of collisionless equivariant minimizers for the classical n-body problem. Invent. Math. 155, 305–362 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Fusco and G. F. Gronchi, Platonic polyhedra, periodic orbits and chaotic motions in the N-body problem with non-Newtonian forces. Preprint, 2013.

  13. Fusco G., Gronchi G.F., Negrini P.: Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem. Invent. Math. 185, 283–332 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Klein and A. Knauf, Classical planar scattering by Coulombic potentials. Lecture Notes in Physics Monographs, Springer-Verlag, Berlin, 1992.

  15. Levi-Civita T.: Sur la régularisation du problème des trois corps. Acta Math. 42, 99–144 (1920)

    Article  MathSciNet  Google Scholar 

  16. Marchal C.: How the method of minimization of action avoids singularities. Celestial Mech. Dynam. Astronom. 83, 325–353 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Marino and D. Scolozzi, Geodesics with obstacles. Boll. Unione Mat. Ital. B (6) 2 (1983), 1–31.

  18. E. Serra and S. Terracini, Noncollision solutions to some singular minimization problems with Keplerian-like potentials. Nonlinear Anal. 22 (1994), 45–62.

  19. Serra E., Terracini S.: Collisionless periodic solutions to some three-body problems. Arch. Ration. Mech. Anal. 120, 305–325 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Shibayama, Variational proof of the existence of the super-eight in the fourbody problem. Preprint, 2013.

  21. N. Soave and S. Terracini, Symbolic dynamics for the N-centre problem at negative energies. Discrete Contin. Dyn. Syst. 32 (2012), 3245–3301.

  22. K. Tanaka, Noncollision solutions for a second order singular Hamiltonian system with weak force. Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), 215–238.

  23. Tanaka K.: A prescribed-energy problem for a conservative singular Hamiltonian system. Arch. Ration. Mech. Anal. 128, 127–164 (1994)

    Article  MATH  Google Scholar 

  24. Terracini S., Venturelli A.: Symmetric trajectories for the 2N-body problem with equal masses. Arch. Ration. Mech. Anal. 184, 465–493 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Venturelli, Une caractérisation variationnelle des solutions de Lagrange du problème plan des trois corps. C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 641–644.

  26. A. Venturelli, Application de la minimisation de l’action au problème de N corps dans le plan e dans l’éspace. PhD thesis, University Paris VII, 2002.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Terracini.

Additional information

To Yvonne Choquet-Bruhat with great admiration

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soave, N., Terracini, S. Avoiding collisions under topological constraints in variational problems coming from celestial mechanics. J. Fixed Point Theory Appl. 14, 457–501 (2013). https://doi.org/10.1007/s11784-014-0174-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-014-0174-3

Mathematics Subject Classification

Keywords

Navigation