Skip to main content
Log in

In silico, in vitro, and in vivo human metabolism of acetazolamide, a carbonic anhydrase inhibitor and common “diuretic and masking agent” in doping

  • Toxicokinetics and Metabolism
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Acetazolamide (ACZ) is a carbonic anhydrase inhibitor prescribed for the treatment of various pathologies. It is also used in doping and is prohibited in and out of sportive competitions. ACZ was reported not to undergo metabolization. However, the detection of ACZ metabolites may be critical for documenting ACZ use. We aimed to further investigate ACZ metabolic fate in humans. ACZ putative metabolites were generated in silico to assist in metabolite identification. ACZ was incubated with primary human hepatocytes to identify in vitro metabolites (10 µmol/l ACZ and 106 cells/ml), and urine and plasma samples from patients receiving a single 5.0 mg/kg BW PO ACZ dose were analyzed to confirm the results in vivo. Analyses were performed with reversed-phase liquid chromatography and hydrophilic interaction chromatography coupled with high-resolution tandem mass spectrometry (RPLC-HRMS/MS and HILIC-HRMS/MS, respectively). Data were screened with a software-assisted targeted/untargeted workflow. ACZ was quantified in urine samples with creatinine normalization. We identified two metabolites in hepatocyte incubations and three additional metabolites in urine and plasma. Major transformations included cysteine conjugation, glucuronidation, and N-acetylation. All metabolites were detected in plasma, 1.5 h after intake. Major metabolites were detected in urine from 0.25 to 24 h (last collection) after intake. As opposed to the literature, ACZ does undergo metabolization in humans. We propose ACZ, ACZ-Cys, and N-acetyl-ACZ in urine, and ACZ and N-acetyl-ACZ in plasma as specific biomarkers of ACZ intake in doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Acknowledgements

This research was funded by the Italian Ministry of Health (“Ministero della Salute”), grant number I34I19001520001 as CUP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco P. Busardò.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Ethical standards

The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Institutional Ethics Committee of CERM (263/2020, October 1, 2020). Informed consent was obtained from all patients involved in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busardò, F.P., Lo Faro, A.F., Sirignano, A. et al. In silico, in vitro, and in vivo human metabolism of acetazolamide, a carbonic anhydrase inhibitor and common “diuretic and masking agent” in doping. Arch Toxicol 96, 1989–2001 (2022). https://doi.org/10.1007/s00204-022-03289-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-022-03289-z

Keywords

Navigation