Skip to main content

Advertisement

Log in

Pharmacologic and interventional paradigms of diuretic resistance in congestive heart failure: a narrative review

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Diuretic volume reduction continues to be the mainstay of congestive heart failure (CHF) management globally. However, diuretic resistance is a critical topic that lacks standardized evidence-based management guidelines accounting for mechanisms of diuretic resistance, renal function, and co-morbidities. Major healthcare utilization consequences result from this. The authors herein reconcile the definition of renal functional decline with emphasis on biomarker-driven assessment. Novel goal-directed treatment approaches are reviewed including hypertonic saline, acetazolamide, sodium-glucose transporter inhibition, sequential nephron blockade and Elabela-APJ axis targeting are reviewed, as well as percutaneous visceral splanchnic sympathectomy (converting a volume-focused to a distribution-focused paradigm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Givertz MM, Teerlink JR, Albert NM, Westlake Canary CA, Collins SP, Colvin-Adams M et al (2013) Acute decompensated heart failure: update on new and emerging evidence and directions for future research. J Card Fail 19(6):371–389

    Article  PubMed  Google Scholar 

  2. Griffin M, Soufer A, Goljo E, Colna M, Rao VS, Jeon S et al (2020) Real world use of hypertonic saline in refractory acute decompensated heart failure: A U.S. Center’s experience. JACC Heart Fail 8(3):199–208

    Article  PubMed  PubMed Central  Google Scholar 

  3. ter Maaten JM, Valente MA, Damman K, Hillege HL, Navis G, Voors AA (2015) Diuretic response in acute heart failure-pathophysiology, evaluation, and therapy. Nat Rev Cardiol 12(3):184–192

    Article  PubMed  CAS  Google Scholar 

  4. Hasselblad V, GattisStough W, Shah MR, Lokhnygina Y, O’Connor CM, Califf RM et al (2007) Relation between dose of loop diuretics and outcomes in a heart failure population: results of the ESCAPE trial. Eur J Heart Fail 9(10):1064–1069

    Article  CAS  PubMed  Google Scholar 

  5. Nistor I, Bararu I, Apavaloaie MC, Voroneanu L, Donciu MD, Kanbay M et al (2015) Vasopressin receptor antagonists for the treatment of heart failure: a systematic review and meta-analysis of randomized controlled trials. Int UrolNephrol 47(2):335–344

    CAS  Google Scholar 

  6. Afsar B, Rossignol P, van Heerebeek L, Paulus WJ, Damman K, Heymans S et al (2017) Heart failure with preserved ejection fraction: a nephrologist-directed primer. Heart Fail Rev 22(6):765–773

    Article  PubMed  Google Scholar 

  7. Strobeck JE, Feldschuh J, Miller WL (2018) Heart failure outcomes with volume-guided management. JACC Heart Fail 6(11):940–948

    Article  PubMed  Google Scholar 

  8. Dharmarajan K, Rich MW (2017) Epidemiology, pathophysiology, and prognosis of heart failure in older adults. Heart Fail Clin 13(3):417–426

    Article  PubMed  Google Scholar 

  9. Ekinci C, Karabork M, Siriopol D, Dincer N, Covic A, Kanbay M (2018) Effects of volume overload and current techniques for the assessment of fluid status in patients with renal disease. Blood Purif 46(1):34–47

    Article  PubMed  Google Scholar 

  10. Dormans TP, Gerlag PG, Russel FG, Smits P (1998) Combination diuretic therapy in severe congestive heart failure. Drugs 55(2):165–172

    Article  CAS  PubMed  Google Scholar 

  11. Ahmad T, Jackson K, Rao VS, Tang WHW, Brisco-Bacik MA, Chen HH et al (2018) Worsening renal function in patients with acute heart failure undergoing aggressive diuresis is not associated with tubular injury. Circulation 137(19):2016–2028

    Article  PubMed  PubMed Central  Google Scholar 

  12. Oh SW, Han SY (2015) Loop diuretics in clinical practice. Electrolyte Blood Press 13(1):17–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jardim SI, Ramos Dos Santos L, Araujo I, Marques F, Branco P, Gaspar A et al (2018) A 2018 overview of diuretic resistance in heart failure. Rev Port Cardiol 37(11):935–945

    Article  PubMed  Google Scholar 

  14. Vaduganathan M, Kumar V, Voors AA, Butler J (2015) Unsolved challenges in diuretic therapy for acute heart failure: a focus on diuretic response. Expert Rev CardiovascTher 13(10):1075–1078

    Article  CAS  Google Scholar 

  15. Grodin JL, Stevens SR, de Las FL, Kiernan M, Birati EY, Gupta D et al (2016) Intensification of medication therapy for cardiorenal syndrome in acute decompensated heart failure. J Card Fail 22(1):26–32

    Article  PubMed  Google Scholar 

  16. Damman K, Tang WH, Testani JM, McMurray JJ (2014) Terminology and definition of changes renal function in heart failure. Eur Heart J 35(48):3413–3416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ljungman S, Laragh JH, Cody RJ (1990) Role of the kidney in congestive heart failure. Relationship of cardiac index to kidney function. Drugs. 39(Suppl 4):10–21 (discussion 2-4)

    Article  PubMed  Google Scholar 

  18. Felker GM, Lee KL, Bull DA, Redfield MM, Stevenson LW, Goldsmith SR et al (2011) Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med 364(9):797–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC et al (2009) Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol 53(7):589–596

    Article  PubMed  PubMed Central  Google Scholar 

  20. Damman K, Testani JM (2015) The kidney in heart failure: an update. Eur Heart J 36(23):1437–1444

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fudim M, Loungani R, Doerfler SM, Coles A, Greene SJ, Cooper LB et al (2018) Worsening renal function during decongestion among patients hospitalized for heart failure: findings from the Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness (ESCAPE) trial. Am Heart J 204:163–173

    Article  PubMed  Google Scholar 

  22. Metra M, Davison B, Bettari L, Sun H, Edwards C, Lazzarini V et al (2012) Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function. Circ Heart Fail 5(1):54–62

    Article  PubMed  Google Scholar 

  23. Martins JL, Santos L, Faustino A, Viana J, Santos J (2018) Worsening or ‘pseudo-worsening’ renal function? The prognostic value of hemoconcentration in patients admitted with acute heart failure. Rev Port Cardiol 37(7):595–602

    Article  PubMed  Google Scholar 

  24. Sheerin NJ, Newton PJ, Macdonald PS, Leung DY, Sibbritt D, Spicer ST et al (2014) Worsening renal function in heart failure: the need for a consensus definition. Int J Cardiol 174(3):484–491

    Article  PubMed  Google Scholar 

  25. Testani JM, Brisco MA, Turner JM, Spatz ES, Bellumkonda L, Parikh CR et al (2014) Loop diuretic efficiency: a metric of diuretic responsiveness with prognostic importance in acute decompensated heart failure. Circ Heart Fail 7(2):261–270

    Article  CAS  PubMed  Google Scholar 

  26. Valente MA, Voors AA, Damman K, Van Veldhuisen DJ, Massie BM, O’Connor CM et al (2014) Diuretic response in acute heart failure: clinical characteristics and prognostic significance. Eur Heart J 35(19):1284–1293

    Article  CAS  PubMed  Google Scholar 

  27. Brisco MA, Coca SG, Chen J, Owens AT, McCauley BD, Kimmel SE et al (2013) Blood urea nitrogen/creatinine ratio identifies a high-risk but potentially reversible form of renal dysfunction in patients with decompensated heart failure. Circ Heart Fail 6(2):233–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heart Failure Society of A, Lindenfeld J, Albert NM, Boehmer JP, Collins SP, Ezekowitz JA et al (2010) HFSA 2010 comprehensive heart failure practice guideline. J Card Fail 16(6):e1-194

    Article  Google Scholar 

  29. Sokolski M, Zymlinski R, Sokolska JM, Biegus J, Banasiak W, Ponikowski P (2019) True worsening renal function identifies patients with acute heart failure with an ominous outcome. Pol Arch Intern Med 129(5):357–360

    PubMed  Google Scholar 

  30. Dupont M, Shrestha K, Singh D, Awad A, Kovach C, Scarcipino M et al (2012) Lack of significant renal tubular injury despite acute kidney injury in acute decompensated heart failure. Eur J Heart Fail 14(6):597–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aghel A, Shrestha K, Mullens W, Borowski A, Tang WH (2010) Serum neutrophil gelatinase-associated lipocalin (NGAL) in predicting worsening renal function in acute decompensated heart failure. J Card Fail 16(1):49–54

    Article  CAS  PubMed  Google Scholar 

  32. Elsharawy S, Raslan L, Morsy S, Hassan B, Khalifa N (2016) Plasma neutrophil gelatinase-associated lipocalin as a marker for the prediction of worsening renal function in children hospitalized for acute heart failure. Saudi J Kidney Dis Transpl 27(1):49–54

    Article  PubMed  Google Scholar 

  33. Sokolski M, Zymlinski R, Biegus J, Siwolowski P, Nawrocka-Millward S, Todd J et al (2017) Urinary levels of novel kidney biomarkers and risk of true worsening renal function and mortality in patients with acute heart failure. Eur J Heart Fail 19(6):760–767

    Article  CAS  PubMed  Google Scholar 

  34. McIlroy DR, Wagener G, Lee HT (2010) Biomarkers of acute kidney injury: an evolving domain. Anesthesiology 112(4):998–1004

    Article  PubMed  Google Scholar 

  35. Medic B, Rovcanin B, BastaJovanovic G, Radojevic-Skodric S, Prostran M (2015) Kidney injury molecule-1 and cardiovascular diseases: from basic science to clinical practice. Biomed Res Int 2015:854070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Carvounis CP, Nisar S, Guro-Razuman S (2002) Significance of the fractional excretion of urea in the differential diagnosis of acute renal failure. Kidney Int 62(6):2223–2229

    Article  CAS  PubMed  Google Scholar 

  37. Goldstein MH, Lenz PR, Levitt MF (1969) Effect of urine flow rate on urea reabsorption in man: urea as a “tubular marker.” J ApplPhysiol 26(5):594–599

    CAS  Google Scholar 

  38. Fenton RA, Knepper MA (2007) Urea and renal function in the 21st century: insights from knockout mice. J Am Soc Nephrol 18(3):679–688

    Article  CAS  PubMed  Google Scholar 

  39. Patidar KR, Kang L, Bajaj JS, Carl D, Sanyal AJ (2018) Fractional excretion of urea: a simple tool for the differential diagnosis of acute kidney injury in cirrhosis. Hepatology 68(1):224–233

    Article  PubMed  Google Scholar 

  40. Diskin CJ, Stokes TJ, Dansby LM, Radcliff L, Carter TB (2010) The comparative benefits of the fractional excretion of urea and sodium in various azotemic oliguric states. Nephron ClinPract 114(2):c145–c150

    Article  CAS  Google Scholar 

  41. Pepin MN, Bouchard J, Legault L, Ethier J (2007) Diagnostic performance of fractional excretion of urea and fractional excretion of sodium in the evaluations of patients with acute kidney injury with or without diuretic treatment. Am J Kidney Dis 50(4):566–573

    Article  PubMed  Google Scholar 

  42. Sood MM, Saeed M, Lim V, Cordova F, Komenda P, Malik A et al (2015) The urea-to-creatinine ratio is predictive of worsening kidney function in ambulatory heart failure patients. J Card Fail 21(5):412–418

    Article  CAS  PubMed  Google Scholar 

  43. Sujino Y, Nakano S, Tanno J, Shiraishi Y, Goda A, Mizuno A et al (2019) Clinical implications of the blood urea nitrogen/creatinine ratio in heart failure and their association with haemoconcentration. ESC Heart Fail 6(6):1274–1282

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cox ZL, Sury K, Rao VS, Ivey-Miranda JB, Griffin M, Mahoney D, et al. (2020) Effect of loop diuretics on the fractional excretion of urea in decompensated heart failure. J Card Fail

  45. Monteiro Pacheco A Jr, Martins Coimbra RS, Kreimeier U, Frey L, Messmer K (1995) Hypertonic volume therapy: feasibility in the prevention and treatment of multiple organ failure and sepsis. Sao Paulo Med J 113(6):1053–1060

    Article  PubMed  Google Scholar 

  46. De Vecchis R, Esposito C, Ariano C, Cantatrione S (2015) Hypertonic saline plus i.v. furosemide improve renal safety profile and clinical outcomes in acute decompensated heart failure: a meta-analysis of the literature. Herz 40(3):423–435

    Article  PubMed  Google Scholar 

  47. Ando T, Okuhara Y, Orihara Y, Nishimura K, Yamamoto K, Masuyama T et al (2018) Urinary composition predicts diuretic efficiency of hypertonic saline solution with furosemide therapy and heart failure prognosis. Heart Vessels 33(9):1029–1036

    Article  PubMed  Google Scholar 

  48. Wan Y, Li L, Niu H, Ma X, Yang J, Yuan C et al (2017) Impact of compound hypertonic saline solution on decompensated heart failure. Int Heart J 58(4):601–607

    Article  PubMed  Google Scholar 

  49. Kassamali R, Sica DA (2011) Acetazolamide: a forgotten diuretic agent. Cardiol Rev 19(6):276–278

    Article  PubMed  Google Scholar 

  50. Verbrugge FH, Dupont M, Steels P, Grieten L, Swennen Q, Tang WH et al (2014) The kidney in congestive heart failure: ‘are natriuresis, sodium, and diuretics really the good, the bad and the ugly?’ Eur J Heart Fail 16(2):133–142

    Article  CAS  PubMed  Google Scholar 

  51. Verbrugge FH, Martens P, Ameloot K, Haemels V, Penders J, Dupont M et al (2019) Acetazolamide to increase natriuresis in congestive heart failure at high risk for diuretic resistance. Eur J Heart Fail 21(11):1415–1422

    Article  CAS  PubMed  Google Scholar 

  52. Amlal H, Soleimani M (2011) Pendrin as a novel target for diuretic therapy. Cell Physiol Biochem 28(3):521–526

    Article  CAS  PubMed  Google Scholar 

  53. Nunez J, Heredia R, Paya A, Sanchis I, Del Prado S, Minana G et al (2018) Use of acetazolamide in the treatment of patients with refractory congestive heart failure. CardiovascTher 36(6):e12465

    Google Scholar 

  54. Wongboonsin J, Thongprayoon C, Bathini T, Ungprasert P, Aeddula NR, Mao MA, et al. (2019) Acetazolamide therapy in patients with heart failure: a meta-analysis. J Clin Med 8(3)

  55. Mullens W, Verbrugge FH, Nijst P, Martens P, Tartaglia K, Theunissen E et al (2018) Rationale and design of the ADVOR (Acetazolamide in Decompensated Heart Failure with Volume Overload) trial. Eur J Heart Fail 20(11):1591–1600

    Article  CAS  PubMed  Google Scholar 

  56. Cherney DZ, Kanbay M, Lovshin JA. 2020 Renal physiology of glucose handling and therapeutic implications. Nephrol Dial Transplant. 35(Supplement_1):i3–i12

  57. Raz I, Cahn A (2016) Heart failure: SGLT2 inhibitors and heart failure—clinical implications. Nat Rev Cardiol 13(4):185–186

    Article  CAS  PubMed  Google Scholar 

  58. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373(22):2117–2128

    Article  CAS  PubMed  Google Scholar 

  59. Komoroski B, Vachharajani N, Boulton D, Kornhauser D, Geraldes M, Li L et al (2009) Dapagliflozin, a novel SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects. ClinPharmacolTher 85(5):520–526

    CAS  Google Scholar 

  60. Karg MV, Bosch A, Kannenkeril D, Striepe K, Ott C, Schneider MP et al (2018) SGLT-2-inhibition with dapagliflozin reduces tissue sodium content: a randomised controlled trial. CardiovascDiabetol 17(1):5

    CAS  Google Scholar 

  61. Hallow KM, Helmlinger G, Greasley PJ, McMurray JJV, Boulton DW (2018) Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes ObesMetab 20(3):479–487

    CAS  Google Scholar 

  62. Poulsen SB, Fenton RA, Rieg T (2015) Sodium-glucose cotransport. CurrOpinNephrolHypertens 24(5):463–469

    CAS  Google Scholar 

  63. Dominguez Rieg JA, Rieg T (2019) What does sodium-glucose co-transporter 1 inhibition add: prospects for dual inhibition. Diabetes ObesMetab 21(Suppl 2):43–52

    CAS  Google Scholar 

  64. Nespoux J, Patel R, Hudkins KL, Huang W, Freeman B, Kim YC et al (2019) Gene deletion of the Na(+)-glucose cotransporter SGLT1 ameliorates kidney recovery in a murine model of acute kidney injury induced by ischemia-reperfusion. Am J Physiol Renal Physiol 316(6):F1201–F1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shah N, Madanieh R, Alkan M, Dogar MU, Kosmas CE, Vittorio TJ (2017) A perspective on diuretic resistance in chronic congestive heart failure. TherAdvCardiovasc Dis 11(10):271–278

    CAS  Google Scholar 

  66. Dormans TP, Gerlag PG (1996) Combination of high-dose furosemide and hydrochlorothiazide in the treatment of refractory congestive heart failure. Eur Heart J 17(12):1867–1874

    Article  CAS  PubMed  Google Scholar 

  67. Channer KS, McLean KA, Lawson-Matthew P, Richardson M (1994) Combination diuretic treatment in severe heart failure: a randomised controlled trial. Br Heart J 71(2):146–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ellison DH (1991) The physiologic basis of diuretic synergism: its role in treating diuretic resistance. Ann Intern Med 114(10):886–894

    Article  CAS  PubMed  Google Scholar 

  69. Goyfman M, Zamudio P, Jang K, Chee J, Miranda C, Butler J et al (2017) Combined aquaretic and diuretic therapy in acute heart failure. Int J NephrolRenovasc Dis 10:129–134

    CAS  Google Scholar 

  70. Gargiulo P, Marsico F, Renga F, Dell’Aversana S, Esposito I, Marciano C et al (2020) The metabolic syndrome in heart failure: insights to specific mechanisms. Heart Fail Rev 25(1):1–7

    Article  PubMed  Google Scholar 

  71. Chng SC, Ho L, Tian J, Reversade B (2013) ELABELA: a hormone essential for heart development signals via the apelin receptor. Dev Cell 27(6):672–680

    Article  CAS  PubMed  Google Scholar 

  72. Murza A, Sainsily X, Coquerel D, Cote J, Marx P, Besserer-Offroy E et al (2016) Discovery and structure-activity relationship of a bioactive fragment of ELABELA that modulates vascular and cardiac functions. J Med Chem 59(7):2962–2972

    Article  CAS  PubMed  Google Scholar 

  73. Voors AA, Kremer D, Geven C, Ter Maaten JM, Struck J, Bergmann A et al (2019) Adrenomedullin in heart failure: pathophysiology and therapeutic application. Eur J Heart Fail 21(2):163–171

    Article  CAS  PubMed  Google Scholar 

  74. Fudim M, Ganesh A, Green C, Jones WS, Blazing MA, DeVore AD et al (2018) Splanchnic nerve block for decompensated chronic heart failure: splanchnic-HF. Eur Heart J 39(48):4255–4256

    Article  PubMed  PubMed Central  Google Scholar 

  75. Burkhoff D, Brener MI. (2020) Blood volume redistribution in chronic heart failure with splanchnic nerve blockade. JACC Heart Fail

Download references

Acknowledgements

MK gratefully acknowledge use of the services and facilities of the Koc University Research Center for Translational Medicine (KUTTAM), funded by the Presidency of Turkey, Presidency of Strategy and Budget. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Presidency of Strategy and Budget.”

Funding

This study was not funded by any Grant.

Author information

Authors and Affiliations

Authors

Contributions

Contributed substantially to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work: SA, CO, SS, BA, MK. Drafted the work or revised it critically for important intellectual content: AS, MK, AO, AC, MK. Approved the final version to be published: AC, AO, MK.

Corresponding author

Correspondence to Mehmet Kanbay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acar, S., Sanli, S., Oztosun, C. et al. Pharmacologic and interventional paradigms of diuretic resistance in congestive heart failure: a narrative review. Int Urol Nephrol 53, 1839–1849 (2021). https://doi.org/10.1007/s11255-020-02704-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-020-02704-7

Keywords

Navigation