Skip to main content

Advertisement

Log in

Arsenic induces autophagy in developmental mouse cerebral cortex and hippocampus by inhibiting PI3K/Akt/mTOR signaling pathway: involvement of blood–brain barrier’s tight junction proteins

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

For the past decade, there has been an increased concern about the health risks from arsenic (As) exposure, because of its neurotoxic effects on the developing brain. The exact mechanism underlying As-induced neurotoxicity during sensitive periods of brain development remains unclear, especially the role of blood–brain barrier’s (BBB) tight junction (TJ) proteins during As-induced neurotoxicity. Here, we highlight the involvement of TJ proteins in As-induced autophagy in cerebral cortex and hippocampus during developmental periods [postnatal day (PND) 21, 28, 35 and 42]. Here, the administration of arsenic trioxide (As2O3) at doses of 0.15 mg or 1.5 mg or 15 mg As2O3/L in drinking water from gestational to lactational and continued to the pups till PND42 resulted in a significant decrease in the mRNA expression levels of TJ proteins (Occludin, Claudin, ZO-1 and ZO-2) and Occludin protein expression level. In addition, As exposure significantly decreased PI3K, Akt, mTOR, and p62 with a concomitant increase in Beclin1, LC3I, LC3II, Atg5 and Atg12. Moreover, As exposure also significantly downregulated the protein expression levels of mTOR with a concomitant upregulation of Beclin 1, LC3 and Atg12 in all the developmental age points. However, no significant alterations were observed in low and medium dose-exposed groups of PND42. Histopathological analysis in As-exposed mice revealed decreased number of pyramidal neurons in hippocampus; and neurons with degenerating axons, shrinkage of cells, remarkable vacuolar degeneration in cytoplasm, karyolysis and pyknosis in cerebral cortex. Ultrastructural analysis by transmission electron microscopy revealed the occurrence of autophagosomes and vacuolated axons in the cerebral cortex and hippocampus of the mice exposed to high dose As at PND21 and 42. The severities of changes were found to more persist in the cerebral cortex than in the hippocampus of As-exposed mice. Finally, we conclude that the leaky BBB in cerebral cortex and hippocampus may facilitate the transfer of As and induces autophagy by inhibiting PI3K/Akt/mTOR signaling pathway in an age-dependent manner, i.e., among the four different developmental age points, PND21 animals were found to be more vulnerable to the As-induced neurotoxicity than the other three age points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  PubMed  Google Scholar 

  • Abdou HM, Yousef MI, El Mekkawy DA, Al-Shami AS (2016) Prophylactic neuroprotective efficiency of co-administration of Ginkgo biloba and Trifolium pretense against sodium arsenite-induced neurotoxicity and dementia in different regions of brain and spinal cord of rats. Food Chem Toxicol 94:112–127

    Article  CAS  PubMed  Google Scholar 

  • Alexander A, Cai SL, Kim J, Nanez A, Sahin M et al (2010) ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci USA 107:4153–4158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allan AM, Hafez AK, Labrecque MT, Solomon ER, Shaikh MN et al (2015) Sex-dependent effects of developmental arsenic exposure on methylation capacity and methylation regulation of the glucocorticoid receptor system in the embryonic mouse brain. Toxicol Rep 2:1376–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andras IE, Pu H, Tian J, Deli MA, Nath A et al (2005) Signaling mechanisms of HIV-1 Tat-induced alterations of claudin-5 expression in brain endothelial cells. J Cereb Blood Flow Metab 25:1159–1170

    Article  CAS  PubMed  Google Scholar 

  • Azad MB, Chen Y, Gibson SB (2009) Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal 11:777–790

    Article  CAS  PubMed  Google Scholar 

  • Bao L, Shi H (2010) Arsenite induces endothelial cell permeability increase through a reactive oxygen species-vascular endothelial growth factor pathway. Chem Res Toxicol 23:1726–1734

    Article  CAS  PubMed  Google Scholar 

  • Barrett KE, Barman SM, Boitano S, Brooks HL (2012) Circulation through special regions. In: Barrett KE, Barman SM, Boitano S, Brooks HL (eds) Ganong’s review of medical physiology, 24th edn. McGraw-Hill, New York

    Google Scholar 

  • Bjrrkry G, Lamark T, Brech A, Outzen H, Perander M et al (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614

    Article  CAS  Google Scholar 

  • Boland B, Kumar A, Lee S, Platt FM, Wegiel J et al (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci 28:6926–6937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolt HM (2012) Arsenic: an ancient toxicant of continuous public health impact, from Iceman Ötzi until now. Arch Toxicol 86:825–830

    Article  CAS  PubMed  Google Scholar 

  • Bolt HM (2015) Highlight report: critical evaluation of key evidence on health hazards of the general European population by exposure to arsenic. Arch Toxicol 89:2455–2457

    Article  CAS  PubMed  Google Scholar 

  • Bolt AM, Byrd RM, Klimecki WT (2010) Autophagy is the predominant process induced by arsenite in human lymphoblastoid cell lines. Toxicol Appl Pharmacol 244:366–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkel J, Khan MMH, Kraemer A (2009) A systematic review of arsenic exposure and its social and mental health effects with special reference to Bangladesh. Int J Environ Res Public Health 6:1609–1619

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Klionsky DJ (2007) Physiological functions of Atg6/Beclin 1: a unique autophagy related protein. Cell Res 17:839–849

    Article  CAS  PubMed  Google Scholar 

  • Chandravanshi LP, Yadav RS, Shukla RK, Singh A, Sultana S et al (2014a) Reversibility of changes in brain cholinergic receptors and acetylcholinesterase activity in rats following early life arsenic exposure. Int J Dev Neurosci 34:60–75

    Article  CAS  PubMed  Google Scholar 

  • Chandravanshi LP, Shukla RK, Sultana S, Pant AB, Khanna VK (2014b) Early life arsenic exposure and brain dopaminergic alterations in rats. Int J Dev Neurosci 38:91–104

    Article  CAS  PubMed  Google Scholar 

  • Choi KC, Kim SH, Ha JY, Kim ST, Son JH (2010) A novel mTOR activating protein protects dopamine neurons against oxidative stress by repressing autophagy related cell death. J Neurochem 112:366–376

    Article  CAS  PubMed  Google Scholar 

  • Chu CT (2006) Autophagic stress in neuronal injury and disease. J Neuropathol Exp Neurol 65:423–432

    Article  PubMed  Google Scholar 

  • Chung YC, Chang YF (2003) Serum interleukin-6 levels reflect the disease status of colorectal cancer. J Surg Oncol 83:222–226

    Article  PubMed  Google Scholar 

  • Dunn WJ (1990) Studies on the mechanisms of autophagy: formation of the Autophagic vacuole. J Cell Biol 110:1923–1933

    Article  PubMed  Google Scholar 

  • Elias BC, Suzuki T, Seth A, Giorgianni F, Kale G et al (2009) Phosphorylation of Tyr-398 and Tyr-402 in occludin prevents its interaction with ZO-1 and destabilizes its assembly at the tight junction. J Biol Chem 11:1559–1569

    Article  CAS  Google Scholar 

  • Eum SY, András IE, Couraud PO, Hennig B, Toborek M (2008) PCBs and tight junction expression. Environ Toxicol Pharmacol 25:234–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fangstrom B, Moore S, Nermell B, Kuenstl L, Goessler W et al (2008) Breast-feeding protects against arsenic exposure in Bangladeshi infants. Environ Health Perspect 116:963–969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S et al (1993) Occludin: A novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S et al (1994) Direct association of occludin with ZO-1 and its possible involvement in the localization of occluding at tight junctions. J Cell Biol 127:1617–1626

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Fujimoto K, Sato N, Hirase T, Tsukita S et al (1996) Overexpression of occludin, a tight junction-associated integral membrane protein, induces the formation of intracellular multilamellar bodies bearing tight junction-like structures. J Cell Sci 109:429–435

    CAS  PubMed  Google Scholar 

  • Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golka K, Hengstler JG, Marchan R, Bolt HM (2010) Severe arsenic poisoning: one of the largest man-made catastrophies. Arch Toxicol 84:583–584

    Article  CAS  PubMed  Google Scholar 

  • González-Mariscal L, Tapia R, Chamorro D (2008) Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta Biomembr 1778:729–756

    Article  CAS  Google Scholar 

  • Goussetis DJ, Altman JK, Glaser H, McNeer JL, Tallman MS et al (2010) Autophagy is a critical mechanism for the induction of the antileukemic effects of arsenic trioxide. J Biol Chem 285:29989–29997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamadani JD, Grantham-McGregor SM, Tofail F, Nermell B, Fangstrom B et al (2010) Pre- and postnatal arsenic exposure and child development at 18 months of age: a cohort study in rural Bangladesh. Int J Epidemiol 39:1206–1216

    Article  PubMed  Google Scholar 

  • Hamadani JD, Tofail F, Nermell B, Gardner R, Shiraji S et al (2011) Critical windows of exposure for arsenic-associated impairment of cognitive function in pre-school girls and boys: a population-based cohort study. Int J Epidemiol 40:1593–1604

    Article  CAS  PubMed  Google Scholar 

  • Haorah J, Ramirez SH, Schall K, Smith D, Pandya R et al (2007) Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood-brain barrier dysfunction. J Neurochem 101:566–576

    Article  CAS  PubMed  Google Scholar 

  • Hill JM, Switzer RC (1984) The regional distribution and cellular localization of iron in the rat brain. Neuroscience 11:595–603

    Article  CAS  PubMed  Google Scholar 

  • Huo TG, Li WK, Zhang YH, Yuan J, Gao LY et al (2015) Excitotoxicity induced by realgar in the rat hippocampus: the involvement of learning memory injury, dysfunction of glutamate metabolism and NMDA receptors. Mol Neurobiol 51(3):980–994

    Article  CAS  PubMed  Google Scholar 

  • Jacquillet G, Barbier O, Rubera I, Tauc M, Borderie A et al (2007) Cadmium causes delayed effects on renal function in the offspring of cadmium-contaminated pregnant female rats. Am J Physiol Renal Physiol 293:F1450–F1460

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Wang G, Zhao F, Liao Y, Sun D et al (2010) Distribution of speciated arsenicals in mice exposed to arsenite at the early life. Ecotoxicol Environ Saf 73(6):1323–1326

    Article  CAS  PubMed  Google Scholar 

  • Jong CJ, Ito T, Schaffer SW (2015) The ubiquitin-proteasome system and autophagy are defective in the taurine-deficient heart. Amino Acids 47:2609–2622

    Article  CAS  PubMed  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawedia JD, Jiang M, Kulkarni A, Waechter HE, Matlin KS et al (2008) The protein kinase A pathway contributes to Hg2+-induced alterations in phosphorylation and subcellular distribution of occludin associated with increased tight junction permeability of salivary epithelial cell monolayers. J Pharmacol Exp Ther 326:829–837

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8:931–937

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, Cuervo AM, Seglen PO (2007) Methods for monitoring autophagy from yeast to human. Autophagy 3:181–206

    Article  CAS  PubMed  Google Scholar 

  • Krizbai IA, Bauer H, Bresgen N, Eckl PM, Farkas A et al (2005) Effect of oxidative stress on the junctional proteins of cultured cerebral endothelial cells. Cell Mol Neurobiol 25:129–139

    Article  CAS  PubMed  Google Scholar 

  • Kumar MR, Flora SJS, Reddy GR (2013) Monoisoamyl 2,3-dimercaptosuccinic acid attenuates arsenic induced toxicity: behavioral and neurochemical approach. Environ Toxicol Pharmacol 36:231–242

    Article  CAS  Google Scholar 

  • Kumar D, Shankar S, Srivastava RK (2014) Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via PI3K/Akt/mTOR signaling pathway. Cancer Lett 343:179–189

    Article  CAS  PubMed  Google Scholar 

  • Laborde A, Tomasina F, Bianchi F, Brune MN, Buka I et al (2015) Children’s health in Latin America: the influence of environmental exposures. Environ Health Perspect 123(3):201–209

    Article  PubMed  Google Scholar 

  • Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Sun Z, Manthari RK, Li M, Guo Q et al (2018) Effect of gestational exposure to arsenic on puberty in offspring female Mice. Chemosphere 202:119–126

    Article  CAS  PubMed  Google Scholar 

  • Liang GH, Weber CR (2014) Molecular aspects of tight junction barrier function. Curr Opin Pharmacol 19:84–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Piao F, Sun X, Bai L, Peng Y et al (2012) Arsenic-induced inhibition of hippocampal neurogenesis and its reversibility. Neurotoxicology 33:1033–1039

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Ling M, Chen C, Luo F, Yang P et al (2017) Impaired autophagic flux and p62-mediated EMT are involved in arsenite induced transformation of L-02 cells. Toxicol Appl Pharmacol 334:75–87

    Article  CAS  PubMed  Google Scholar 

  • Lu TH, Tseng TJ, Su CC, Tang FC, Yen CC et al (2014) Arsenic induces reactive oxygen species-caused neuronal cell apoptosis through JNK/ERK-mediated mitochondria-dependent and GRP 78/CHOP-regulated pathways. Toxicol Lett 224(1):130–140

    Article  CAS  PubMed  Google Scholar 

  • Luo JH, Qiu ZQ, Shu WQ, Zhang YY, Zhang L et al (2009) Effects of arsenic exposure from drinking water on spatial memory, ultra-structures and NMDAR gene expression of hippocampus in rats. Toxicol Lett 184:121–125

    Article  CAS  PubMed  Google Scholar 

  • Martínez L, Jiménez V, García-Sepúlveda C, Ceballos F, Delgado JM et al (2011) Impact of early developmental arsenic exposure on promotor CpG-island methylation of genes involved in neuronal plasticity. Neurochem Int 58(5):574–581

    Article  PubMed  CAS  Google Scholar 

  • Meijer AJ, Codogno P (2006) Signalling and autophagy regulation in health, aging and disease. Mol Aspects Med 27:411–425

    Article  CAS  PubMed  Google Scholar 

  • Merenlender-Wagner A, Malishkevich A, Shemer Z, Udawela M, Gibbons A et al (2015) Autophagy has a key role in the pathophysiology of schizophrenia. Mol Psychiatry 20:126–132

    Article  CAS  PubMed  Google Scholar 

  • Mi Y, Xiao C, Du Q, Wu W, Qi G et al (2016) Momordin Ic couples apoptosis with autophagy in human hepatoblastoma cancer cells by reactive oxygen species (ROS)-mediated PI3K/Akt and MAPK signaling pathways. Free Radic Biol Med 90:230242

    Article  CAS  Google Scholar 

  • Mizushima N, Hara T (2006) Intracellular quality control by autophagy: how does autophagy prevent neurodegeneration? Autophagy 2:302–304

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3:542–545

    Article  CAS  PubMed  Google Scholar 

  • Moreira P, Santos R, Zhu X, Lee H, Smith M et al (2010) Autophagy in Alzheimer’s disease. Expert Rev Neurother 10:1209–1218

    Article  PubMed  Google Scholar 

  • Nagappan A, Lee WS, Yun JW, Lu JN, Chang SH et al (2017) Tetraarsenic hexoxide induces G2/M arrest, apoptosis, and autophagy via PI3K/Akt suppression and p38 MAPK activation in SW620 human colon cancer cells. PLoS ONE 12(3):e0174591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • National Research Council (U.S.) (1999) Subcommittee on arsenic in drinking water, arsenic in drinking water. National Academy Press, Washington, DC

    Google Scholar 

  • Nixon RA (2007) Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci 120:4081–4091

    Article  CAS  PubMed  Google Scholar 

  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33):24131–24145

    Article  CAS  PubMed  Google Scholar 

  • Persidsky Y, Heilman D, Haorah J, Zelivyanskaya M, Persidsky R et al (2006) Rho-mediated regulation of tight junctions during monocyte migration across the blood–brain barrier in HIV-1 encephalitis (HIVE). Blood 107:4770–4780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prior MJ, Brown AM, Mavroudis G, Lister T, Ray DE (2004) MRI characterisation of a novel rat model of focal astrocyte loss. MAGMA 17:125–132

    Article  CAS  PubMed  Google Scholar 

  • Pucer A, Castino R, Mirkovic B, Falnoga I, Slejkovec Z et al (2010) Differential role of cathepsins B and L in autophagy-associated cell death induced by arsenic trioxide in U87 human glioblastoma cells. Biol Chem 391(5):519–531

    Article  CAS  PubMed  Google Scholar 

  • Qian W, Liu J, Jin J, Ni W, Xu W (2007) Arsenic trioxide induces not only apoptosis but also autophagic cell death in leukemia cell lines via up-regulation of Beclin-1. Leuk Res 31:329–339

    Article  PubMed  CAS  Google Scholar 

  • Rai A, Maurya S, Khare P, Srivastava A, Bandyopadhyay S (2010) Characterization of developmental neurotoxicity of As, Cd, and Pb mixture: synergistic action of metal mixture in glial and neuronal functions. Toxicol Sci 118:586–601

    Article  CAS  PubMed  Google Scholar 

  • Raleigh DR, Boe DM, Yu D, Weber CR, Marchiando AM et al (2011) Occludin S408 phosphorylation regulates tight junction protein interactions and barrier function. J Cell Biol 193:565–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosado JL, Ronquillo D, Kordas K, Rojas O, Alatorre J et al (2007) Arsenic exposure and cognitive performance in Mexican school children. Environ Health Perspect 115:1371–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreibelt G, Kooij G, Reijerkerk A, van Doorn R, Gringhuis SI et al (2007) Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J 21:3666–3676

    Article  CAS  PubMed  Google Scholar 

  • Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shulman RG, Rothman DL, Behar KL, Hyder F (2004) Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci 27:489–495

    Article  CAS  PubMed  Google Scholar 

  • Smith AH, Steinmaus CM (2009) Health effects of arsenic and chromium in drinking water: recent human findings. Annu Rev Public Health 30:107–122

    Article  PubMed  PubMed Central  Google Scholar 

  • Song H, Zheng G, Shen XF, Liu XQ, Luo WJ et al (2014) Reduction of brain barrier tight junctional proteins by lead exposure: role of activation of nonreceptor tyrosine kinase Src via chaperon GRP78. Toxicol Sci 138:393–402

    Article  CAS  PubMed  Google Scholar 

  • Stipanuk MH (2009) Macroautophagy and its role in nutrient homeostasis. Nutr Rev 67:677–689

    Article  PubMed  Google Scholar 

  • Straif K, Benbrahim-Tallaa L, Baan R, Grosse Y, Secretan B et al (2009) A review of human carcinogens—part C: metals, arsenic, dusts, and fibres. Lancet Oncol 10:453–454

    Article  PubMed  Google Scholar 

  • Su M, Guan H, Zhang F, Gao Y, Teng X et al (2016) HDAC6 regulates the chaperone- mediated autophagy to prevent oxidative damage in injured neurons after experimental spinal cord injury. Oxidative Med Cell Longev 2016:7263736

    Google Scholar 

  • Sun X, Li J, Zhao H, Wang Y, Liu J et al (2018) Synergistic effect of copper and arsenic upon oxidative stress, inflammation and autophagy alterations in brain tissues of Gallus gallus. J Inorg Biochem 178:54–62

    Article  CAS  PubMed  Google Scholar 

  • Tofail F, Vahter M, Hamadani JD, Nermell B, Huda SN et al (2009) Effect of arsenic exposure during pregnancy on infant development at 7 months in rural Matlab, Bangladesh. Environ Health Perspect 117:288–293

    Article  CAS  PubMed  Google Scholar 

  • Tolins M, Ruchirawat M, Landrigan P (2014) The developmental neurotoxicity of arsenic: cognitive and behavioral consequences of early life exposure. Ann Glob Health 80:303–314

    Article  PubMed  Google Scholar 

  • Vahter M (2008) Health effects of early life exposure to arsenic. Basic Clin Pharmacol Toxicol 102:204–211

    Article  CAS  PubMed  Google Scholar 

  • Van Itallie CM, Fanning AS, Holmes J, Anderson JM (2010) Occludin is required for cytokine-induced regulation of tight junction barriers. J Cell Sci 123:2844–2852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vibol S, Hashim JH, Sarmani S (2015) Neurobehavioral effects of arsenic exposure among secondary school children in the Kandal Province, Cambodia. Environ Res 137:329–337

    Article  CAS  PubMed  Google Scholar 

  • von Ehrenstein OS, Poddar S, Yuan Y, Mazumder DG, Eskenazi B et al (2007) Children’s intellectual function in relation to arsenic exposure. Epidemiology 18:44–51

    Article  Google Scholar 

  • Wang Q, Luo W, Zheng W, Liu Y, Xu H et al (2007a) Iron supplement prevents lead-induced disruption of the blood-brain barrier during rat development. Toxicol Appl Pharmacol 219:33–41

    Article  CAS  PubMed  Google Scholar 

  • Wang SX, Wang ZH, Cheng XT, Li J, Sang ZP et al (2007b) Arsenic and fluoride exposure in drinking water: children’s IQ and growth in Shanyin county, Shanxi Province, China. Environ Health Perspect 115:643–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang QW, Wang Y, Wang T, Zhang KB, Jiang CY et al (2015) Cadmium-induced autophagy promotes survival of rat cerebral cortical neurons by activating class III phosphoinositide 3-kinase/beclin-1/B-cell lymphoma 2 signaling pathways. Mol Med Rep 12:2912–2918

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Zhang Q, Peng X, Zhou C, Zhong Y et al (2016) Stellettin B induces G1 arrest, apoptosis and autophagy in human nonsmall cell lung cancer A549 cells via blocking PI3K/Akt/mTOR pathway. Sci Rep 6:27071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Zhang T, Sun W, Wang H, Yin F et al (2017) Arsenic sulfide induces apoptosis and autophagy through the activation of ROS/JNK and suppression of Akt/mTOR signaling pathways in osteosarcoma. Free Radic Biol Med 106:24–37

    Article  CAS  PubMed  Google Scholar 

  • Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P et al (2007) Water arsenic exposure and intellectual function in 6-year-old children in Araihazar, Bangladesh. Environ Health Perspect 115:285–289

    Article  CAS  PubMed  Google Scholar 

  • Wasserman GA, Liu X, Loiacono NJ, Kline J, Factor-Litvak P et al (2014) A cross-sectional study of well water arsenic and child IQ in Maine school children. Environ Health 13:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weiss N, Miller F, Cazaubon S, Couraud PO (2009) The blood–brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta 1788:842–857

    Article  CAS  PubMed  Google Scholar 

  • WHO (2011) Guideline for drinking-water quality, 4 edn. World Health Organization, Geneva

    Google Scholar 

  • Willis CL, Leach L, Clarke GJ, Nolan CC, Ray DE (2004) Reversible disruption of tight junction complexes in the rat blood-brain barrier, following transitory focal astrocyte loss. Glia 48:1–13

    Article  PubMed  Google Scholar 

  • Wu YT, Tan HL, Shui G, Bauvy C, Huang Q et al (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 285:10850–10861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xi S, Guo L, Qi R, Sun W, Jin Y et al (2010) Prenatal and early life arsenic exposure induced oxidative damage and altered activities and mRNA expressions of neurotransmitter metabolic enzymes in offspring rat brain. J Biochem Mol Toxicol 24:368–378

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZL, Fan Y, Liu ML (2012) Ginsenoside Rg1 inhibits autophagy in H9c2 cardiomyocytes exposed to hypoxia/reoxygenation. Mol Cell Biochem 365:243–250

    Article  CAS  PubMed  Google Scholar 

  • Zhong Y, Smart EJ, Weksler B, Couraud PO, Hennig B et al (2008) Caveolin-1 regulates human immunodeficiency virus-1Tat-induced alterations of tight junction protein expression via modulation of the Ras signaling. J Neurosci 28:7788–7796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by China National Natural Science Foundation (Grant No. 31672623 and 31372497).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jundong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manthari, R.K., Tikka, C., Ommati, M.M. et al. Arsenic induces autophagy in developmental mouse cerebral cortex and hippocampus by inhibiting PI3K/Akt/mTOR signaling pathway: involvement of blood–brain barrier’s tight junction proteins. Arch Toxicol 92, 3255–3275 (2018). https://doi.org/10.1007/s00204-018-2304-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-018-2304-y

Keywords

Navigation