Skip to main content
Log in

Production of chlorzoxazone glucuronides via cytochrome P4502E1 dependent and independent pathways in human hepatocytes

  • Toxicokinetics and Metabolism
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

CYP2E1 activity is measured in vitro and in vivo via hydroxylation of the Chlorzoxazone (CHZ) producing the 6-hydroxychlorzoxazone (OH-CHZ) further metabolized as a glucuronide excreted in urine. Thus, the quantification of the OH-CHZ following enzymatic hydrolysis of CHZ-derived glucuronide appears to be a reliable assay to measure the CYP2E1 activity without direct detection of this glucuronide. However, OH-CHZ hydrolyzed from urinary glucuronide accounts for less than 80% of the CHZ administrated dose in humans leading to postulate the production of other unidentified metabolites. Moreover, the Uridine 5′-diphospho-glucuronosyltransferase (UGT) involved in the hepatic glucuronidation of OH-CHZ has not yet been identified. In this study, we used recombinant HepG2 cells expressing CYP2E1, metabolically competent HepaRG cells, primary hepatocytes and precision-cut human liver slices to identify metabolites of CHZ (300 μM) by high pressure liquid chromatography-UV and liquid-chromatography-mass spectrometry analyses. Herein, we report the detection of the CHZ-O-glucuronide (CHZ-O-Glc) derived from OH-CHZ in culture media but also in mouse and human urine and we identified a novel CHZ metabolite, the CHZ-N-glucuronide (CHZ-N-Glc), which is resistant to enzymatic hydrolysis and produced independently of CHZ hydroxylation by CYP2E1. Moreover, we demonstrate that UGT1A1, 1A6 and 1A9 proteins catalyze the synthesis of CHZ-O-Glc while CHZ-N-Glc is produced by UGT1A9 specifically. Together, we demonstrated that hydrolysis of CHZ-O-Glc is required to reliably quantify CYP2E1 activity because of the rapid transformation of OH-CHZ into CHZ-O-Glc and identified the CHZ-N-Glc produced independently of the CYP2E1 activity. Our results also raise the questions of the contribution of CHZ-N-Glc in the overall CHZ metabolism and of the quantification of CHZ glucuronides in vitro and in vivo for measuring UGT1A activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CHZ:

Chlorzoxazone

OH-CHZ:

6-hydroxychlorzoxazone

CHZ-O-Glc:

Chlorzoxazone-O-glucuronide

CHZ-N-Glc:

Chlorzoxazone-N-glucuronide

CYP450:

Cytochrome P450

DMSO:

Dimethyl sulfoxide

XMEs:

Xenobiotic metabolizing enzymes

UGT:

Uridine 5′-diphospho-glucuronosyltransferase

HPLC-UV:

High pressure liquid chromatography-UV

LC-MS:

Liquid-chromatography-mass spectrometry

References

  • Abdelmegeed MA, Banerjee A, Yoo SH, Jang S, Gonzalez FJ, Song BJ (2012) Critical role of cytochrome P450 2E1 (CYP2E1) in the development of high fat-induced non-alcoholic steatohepatitis. J Hepatol 57:860–866

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Abdel-Razzak Z, Loyer P, Fautrel A, Gautier JC, Corcos L, Turlin B et al (1993) Cytokines down-regulate expression of major cytochrome P-450 enzymes in adult human hepatocytes in primary culture. Mol Pharmacol 44:707–715

    CAS  PubMed  Google Scholar 

  • Aninat C, Piton A, Glaise D, Le Charpentier T, Langouet S, Morel F et al (2006) Expression of cytochrome P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug Metab Dispos 34:75–83

    Article  CAS  PubMed  Google Scholar 

  • Aubert J, Begriche K, Knockaert L, Robin MA, Fromenty B (2011) Increased expression of cytochrome P450 2E1 in nonalcoholic fatty liver disease: mechanisms and pathophysiological role. Clin Res Hepatol Gastroenterol 35:630–637

    Article  CAS  PubMed  Google Scholar 

  • Boström M, Becedas L, DePierre JW (2000) Conjugation of 1-naphtol in primary cell cultures of rat ovarian cells. Chem Biol Interact 124:103–118

    Article  PubMed  Google Scholar 

  • Carriere V, Goasduff T, Ratavasavanh D, Morel F, Gautier JC, Guillouzo A et al (1993) Both cytochromes P450 2E1 and 1A1 are involved in the metabolism of chlorzoxazone. Chem Res Toxicol 6:852–857

    Article  CAS  PubMed  Google Scholar 

  • Cederbaum AI (2014) Methodology to assay CYP2E1 mixed function oxidase catalytic activity and its induction. Redox Biol 2:1048–1054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cerec V, Glaise D, Garnier D, Morosan S, Turlin B, Drenou B et al (2007) Transdifferentiation of hepatocyte-like cells from the human hepatoma HepaRG cell line through bipotent progenitor. Hepatology 45:957–967

    Article  CAS  PubMed  Google Scholar 

  • Chalasani N, Gorski CG, Asghar MS, Asghar A, Foresman B, Hall SD et al (2003) Hepatic cytochrome P450 2E1 activity in nondiabetic patients with nonalcoholic steatohepatitis. Hepatology 37:544–550

    Article  CAS  PubMed  Google Scholar 

  • Chou R, Peterson K, Helfand M (2004) Comparative efficacy and safety of skeletal muscle relaxants for spasticity and musculoskeletal conditions: a systematic review. J Pain Symptom Manag 28:140–175

    Article  CAS  Google Scholar 

  • Conney AH, Burns JJ (1960a) Physiological disposition and metabolic fate of chlorzoxazone (paraflex) in man. J Pharmacol Exp Ther 128:340–343

    CAS  PubMed  Google Scholar 

  • Conney AH, Tousof N, Burns JJ (1960b) The metabolic fate of zoxazolamine (flexin) in man. J Pharmacol Exp Ther 128:333–339

    CAS  PubMed  Google Scholar 

  • Desiraju RK, Renzi NL Jr, Nayak RK, Ng KT (1983) Pharmacokinetics of chlorzoxazone in humans. J Pharm Sci 72:991–994

    Article  CAS  PubMed  Google Scholar 

  • Dumont J, Jossé R, Lambert C, Anthérieu S, Laurent V, Loyer P et al (2010) Preferential induction of the AhR gene battery in HepaRG cells after a single or repeated exposure to heterocyclic aromatic amines. Toxicol Appl Pharmacol 249:91–100

    Article  CAS  PubMed  Google Scholar 

  • Ernstgård L, Warholm M, Johanson G (2004) Robustness of chlorzoxazone as an in vivo measure of cytochrome P450 2E1 activity. Br J Clin Pharmacol 58:190–200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frye RF, Adedoyin A, Mauro K, Matzke GR, Branch RA (1998) Use of chlorzoxazone as an in vivo probe of cytochrome P450 2E1: choice of dose and phenotypic trait measure. J Clin Pharmacol 38:82–89

    Article  CAS  PubMed  Google Scholar 

  • Gade C, Mikus G, Christensen HR, Dalhoff KP, Holm JC, Holst H (2016) The CYTONOX trial. Dan Med J 63:pii: A5226

    Google Scholar 

  • Gade C, Dalhoff K, Petersen TS, Riis T, Schmeltz C, Chabanova E, Christensen HR, Mikus G, Burhenne J, Holm JC, Holst H (2018) Higher chlorzoxazone clearance in obese children compared with nonobese peers. Br J Clin Pharmacol 84:1738–1747

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez FJ (2007) The 2006 Bernard B. Brodie Award Lecture. CYP2E1. Drug Metab Dispos 35:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kanebratt KP, Andersson TB (2008) Evaluation of HepaRG cells as an in vitro model for human drug metabolism studies. Drug Metab Dispos 36:1444–1452

    Article  CAS  PubMed  Google Scholar 

  • Kharasch ED, Thummel KE, Mhyre J, Lillibridge JH (1993) Single-dose disulfiram inhibition of chlorzoxazone metabolism: a clinical probe for P450 2E1. Clin Pharmacol Ther 53:643–650

    Article  CAS  PubMed  Google Scholar 

  • Koop DR (1982) Oxidative and reductive metabolism by cytochrome P450 2E1. FASEB J 6:724–730

    Article  Google Scholar 

  • Leite SB, Wilk-Zasadna I, Zaldivar JM, Airola E, Reis-Fernandes MA, Mennecozzi M, Guguen-Guillouzo C, Chesne C, Guillou C, Alves PM, Coecke S (2012) Three-dimensional HepaRG model as an attractive tool for toxicity testing. Toxicol Sci 130:106–116

    Article  CAS  PubMed  Google Scholar 

  • Lucas D, Berthou F, Girre C, Poitrenaud F, Ménez JF (1993) High-performance liquid chromatographic determination of chlorzoxazone and 6-hydroxychlorzoxazone in serum: a tool for indirect evaluation of cytochrome P4502E1 activity in humans. J Chromatogr 622:79–86

    Article  CAS  PubMed  Google Scholar 

  • Lucas D, Ferrara R, Gonzalez E, Bodenez P, Albores A, Manno M et al (1999) Chlorzoxazone, a selective probe for phenotyping CYP2E1 in humans. Pharmacogenetics 9:377–388

    Article  CAS  PubMed  Google Scholar 

  • Martin-Murphy BV, Kominsky DJ, Orlicky DJ, Donohue TM, Ju C (2013) Increased susceptibility of natural killer T-cell-deficient mice to acetaminophen-induced liver injury. Hepatology 57:1575–1584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mehvar R, Vuppugalla R (2006) Hepatic disposition of the cytochrome P450 2E1 marker chlorzoxazone and its hydroxylated metabolite in isolated perfused rat livers. J Pharm Sci 95:1414–1424

    Article  CAS  PubMed  Google Scholar 

  • Miners JO, Knights KM, Houston JB, Mackenzie PI (2006) In vitro–in vivo correlation for drugs and other compounds eliminated by glucuronidation in humans: pitfalls and promises. Biochem Pharmacol 71:1531–1539

    Article  CAS  PubMed  Google Scholar 

  • Moncion A, Truong NT, Garrone A, Beaune P, Barouki R, De Waziers I (2002) Identification of a 16-nucleotide sequence that mediates post-transcriptional regulation of rat CYP2E1 by insulin. J Biol Chem 277:45904–45910

    Article  CAS  PubMed  Google Scholar 

  • Olinger SD, Currier RD, DeJong RN (1958) Clinical experience with chlorzoxazone (paraflex) in neurologic disorders. Med Bull (Ann Arbor) 24:259–264

    CAS  Google Scholar 

  • Peter R, Böcker R, Beaune PH, Iwasaki M, Guengerich FP, Yang CS (1990) Hydroxylation of chlorzoxazone as a specific probe for human liver cytochrome P-450IIE1. Chem Res Toxicol 3:566–573

    Article  CAS  PubMed  Google Scholar 

  • Poloyac SM, Tosheva RT, Gardner BM, Shedlofsky SI, Blouin RA (1999) The effect of endotoxin administration on the pharmacokinetics of chlorzoxazone in humans. Clin Pharmacol Ther 66:554–562

    Article  CAS  PubMed  Google Scholar 

  • Quesnot N, Rondel K, Audebert M, Martinais S, Glaise D, Morel F et al (2016) Evaluation of genotoxicity using automated detection of γH2AX in metabolically competent HepaRG cells. Mutagenesis 31:43–50

    CAS  PubMed  Google Scholar 

  • Rockich K, Blouin R (1999) Effect of the acute-phase response on the pharmacokinetics of chlorzoxazone and cytochrome P-450 2E1 in vitro activity in rats. Drug Metab Dispos 27:1074–1077

    CAS  PubMed  Google Scholar 

  • Rowland A, Miners JO, Mackenzie PI (2013) The UDP-glucurosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol 45:1121–1132

    Article  CAS  PubMed  Google Scholar 

  • Song BJ, Veech RL, Park SS, Gelboin HV, Gonzalez FJ (1989) Induction of rat hepatic N-nitrosodimethylamine demethylase by acetone is due to protein stabilization. J Biol Chem 264:3568–3572

    CAS  PubMed  Google Scholar 

  • Spaggiari D, Geiser L, Daali Y, Rudaz S (2014) A cocktail approach for assessing the in vitro activity of human cytochrome P450s: an overview of current methodologies. J Pharm Biomed Anal 101:221–237

    Article  CAS  PubMed  Google Scholar 

  • Twele R, Spiteller G (1982) Identification of chlorzoxazone metabolites in human urine. Arzneimittelforschung 32:759–763

    CAS  PubMed  Google Scholar 

  • Ullah I, Cadwallader DE, Honigberg IL (1970) Determination of degradation kinetics of chlorzoxazone by thin-layer chromatography. J Chromatogr 46:211–216

    Article  CAS  PubMed  Google Scholar 

  • Walsky RL, Bauman JN, Bourcier K, Giddens G, Lapham K, Negahban A, Ryder TF, Obach RS, Hyland R, Goosen TC (2012) Optimized assays for human UDP-glucuronosyltransferase (UGT) activities: altered alamethicin concentration and utility to screen for UGT inhibitors. Drug Metab Dispos 40:1051–1065

    Article  CAS  PubMed  Google Scholar 

  • Witt L, Suzuki Y, Hohmann N, Mikus G, Haefeli WE, Burhenne J (2016) Ultrasensitive quantification of the CYP2E1 probe chlorzoxazone and its main metabolite 6-hydroxychlorzoxazone in human plasma using ultra performance liquid chromatography coupled to tandem mass spectrometry after chlorzoxazone microdosing. J Chromatogr 1027:207–213

    CAS  Google Scholar 

  • Woodcroft KJ, Hafner MS, Novak RF (2002) Insulin signaling in the transcriptional and posttranscriptional regulation of CYP2E1 expression. Hepatology 35:263–273

    Article  CAS  PubMed  Google Scholar 

  • Zangar RC, Novak RF (1997) Effects of fatty acids and ketone bodies on cytochromes P450 2B, 4A, and 2E1 expression in primary cultured rat hepatocytes. Arch Biochem Biophys 138:217–224

    Article  Google Scholar 

  • Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharm Ther 138:103–141

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Anne Corlu and Caroline Aninat (Institut NuMeCan, Inserm U1241, Rennes) for fruitful suggestions and Pr. Valérie Paradis (Département de Pathologie, Hôpital Bichat-Beaujon, Paris) and Pr. Véronique Catros (Service de Biologie cellulaire et cytogénétique, Hôpital Pontchaillou, Rennes) for helping us with the preparation of human liver slices. The authors would like to dedicate this article to Dr. Marie-Anne Robin who passed away during the course of this study. Marie-Anne Robin was an exceptional scientist and friend whose enthusiasm for life and belief in science will continue to inspire all of us who were privileged to know her.

Funding

This work was funded by the Institut National de la Santé et de la Recherche Médicale (Inserm, France). Nicolas Quesnot received a fellowship from the Région Bretagne and Ligue contre le Cancer, Comité Départemental des Côtes d’Armor (22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Loyer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 KB)

Supplementary material 2 (PPT 3486 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quesnot, N., Bucher, S., Gade, C. et al. Production of chlorzoxazone glucuronides via cytochrome P4502E1 dependent and independent pathways in human hepatocytes. Arch Toxicol 92, 3077–3091 (2018). https://doi.org/10.1007/s00204-018-2300-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-018-2300-2

Keywords

Navigation