Skip to main content

Advertisement

Log in

Auto-induction mechanism of aryl hydrocarbon receptor 2 (AHR2) gene by TCDD-activated AHR1 and AHR2 in the red seabream (Pagrus major)

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The toxic effects of dioxins and related compounds (DRCs) are mediated by the aryl hydrocarbon receptor (AHR). Our previous study identified AHR1 and AHR2 genes from the red seabream (Pagrus major). Moreover, we found that AHR2 mRNA levels were notably elevated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure in the early life stage of red seabream embryos, while AHR1 mRNA level was not altered. In this study, to investigate the regulatory mechanism of these AHR transcripts, we cloned and characterized 5′-flanking regions of AHR1 and AHR2 genes. Both of the 5′-flanking regions in these AHR genes contained three potential xenobiotic-responsive elements (XREs). To assess whether the 5′-flanking region is transactivated by rsAHR1 and rsAHR2 proteins, we measured the transactivation potency of the luciferase reporter plasmids containing the 5′-flanking regions by AHR1 and AHR2 proteins that were transiently co-expressed in COS-7. Only reporter plasmid (pGL4-rsAHR2-3XREs) that contained three putative XRE sites in the 5′-flanking region of AHR2 gene showed a clear TCDD dose-dependent transactivation by AHR1 and AHR2 proteins. TCDD-EC50 values for the rsAHR2-derived XRE transactivation were 1.3 and 1.4 nM for AHR1 and AHR2, respectively. These results suggest that the putative XREs of AHR2 gene have a function for AHR1- and AHR2-mediated transactivation, supporting our in ovo observation of an induction of AHR2 mRNA levels by TCDD exposure. Mutations in XREs of AHR2 gene led to a decrease in luciferase induction. Electrophoretic mobility shift assay showed that XRE1, the closest XRE from the start codon in AHR2 gene, is mainly responsible for the binding with TCDD-activated AHR. This suggests that TCDD-activated AHR1 and AHR2 up-regulate the AHR2 mRNA levels and this auto-induced AHR2 may amplify the signal transduction of its downstream targets including CYP1A in the red seabream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abnet CC, Tanguay RL, Hahn ME, Heideman W, Peterson RE (1999) Two forms of aryl hydrocarbon receptor type 2 in rainbow trout (Oncorhynchus mykiss) evidence for differential expression and enhancer specificity. J Biol Chem 274:15159–15166. doi:10.1074/jbc.274.21.15159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreasen EA, Hahn ME, Heideman W, Peterson RE, Tanguay RL (2002a) The zebrafish (Danio rerio) aryl hydrocarbon receptor type 1 is a novel vertebrate receptor. Mol Pharmacol 62:234–249. doi:10.1124/mol.62.2.234

    Article  CAS  PubMed  Google Scholar 

  • Andreasen EA, Spitsbergen JM, Tanguay RL, Stegeman JJ, Heideman W, Peterson RE (2002b) Tissue-specific expression of AHR2, ARNT2, and CYP1A in zebrafish embryos and larvae: effects of developmental stage and 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure. Toxicol Sci 68:403–419. doi:10.1093/toxsci/68.2.403

    Article  CAS  PubMed  Google Scholar 

  • Bagamasbad P, Denver RJ (2011) Mechanisms and significance of nuclear receptor auto-and cross-regulation. Gen Comp Endocr 170:3–17. doi:10.1016/j.ygcen.2010.03.013

    Article  CAS  PubMed  Google Scholar 

  • Bak SM, Iida M, Hirano M, Iwata H, Kim EY (2013) Potencies of red seabream AHR1-and AHR2-mediated transactivation by dioxins: implication of both AHRs in dioxin toxicity. Environ Sci Technol 47:2877–2885. doi:10.1021/es304423w

    Article  CAS  PubMed  Google Scholar 

  • Carvajal-Gonzalez JM, Mulero-Navarro S, Roman AC, Sauzeau V, Merino JM, Bustelo XR, Fernandez-Salguero PM (2009) The dioxin receptor regulates the constitutive expression of the vav3 proto-oncogene and modulates cell shape and adhesion. Mol Biol Cell 20:1715–1727. doi:10.1091/mbc.E08-05-0451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang H, Wang YJ, Chang LW, Lin P (2005) A histochemical and pathological study on the interrelationship between TCDD-induced AhR expression, AhR activation, and hepatotoxicity in mice. J Toxicol Env Health A 68:1567–1579. doi:10.1080/15287390590967513

    Article  CAS  Google Scholar 

  • Cho SW, Suzuki KI, Miura Y, Miyazaki T, Nose M, Iwata H, Kim EY (2014) Novel role of hnRNP-A2/B1 in modulating aryl hydrocarbon receptor ligand sensitivity. Arch Toxicol. doi:10.1007/s00204-014-1352-1

    Google Scholar 

  • Denison MS, Fisher JM, Whitlock JP (1988) The DNA recognition site for the dioxin-Ah receptor complex. Nucleotide sequence and functional analysis. J Biol Chem 263:17221–17224

    CAS  PubMed  Google Scholar 

  • Denison MS, Rogers JM, Rushing SR, Jones CL, Tetangco SC, Heath-Pagliuso S (2002) Analysis of the Ah Receptor Signal Transduction Pathway. In: Maines M, Costa LG, Reed DJ, Sassa S, Sipes IG (eds) Current Protocols in Toxicology. Wiley, New York, pp 4.8.1–4.8.45. doi:10.1002/0471140856.tx0408s11

    Google Scholar 

  • Dere E, Lo R, Celius T, Matthews J, Zacharewski TR (2011) Integration of genome-wide computation DRE search, AhR ChIP-chip and gene expression analyses of TCDD-elicited responses in the mouse liver. BMC Genom 12:365. doi:10.1186/1471-2164-12-365

    Article  CAS  Google Scholar 

  • Dietrich C, Kaina B (2010) The aryl hydrocarbon receptor (AhR) in the regulation of cell–cell contact and tumor growth. Carcinogenesis 31:1319–1328. doi:10.1093/carcin/bgq028

    Article  CAS  PubMed  Google Scholar 

  • Eguchi H, Hayashi SI, Watanabe J, Gotoh O, Kawajiri K (1994) Molecular cloning of the human AH receptor gene promoter. Biochem Biophys Res Commun 203:615–622. doi:10.1006/bbrc.1994.2227

    Article  CAS  PubMed  Google Scholar 

  • Elizondo G, Fernandez-Salguero P, Sheikh MS, Kim GY, Fornace AJ, Lee KS, Gonzalez FJ (2000) Altered cell cycle control at the G2/M phases in aryl hydrocarbon receptor-null embryo fibroblast. Mol Pharmacol 57:1056–1063

    CAS  PubMed  Google Scholar 

  • Evans BR, Karchner SI, Franks DG, Hahn ME (2005) Duplicate aryl hydrocarbon receptor repressor genes (ahrr1 and ahrr2) in the zebrafish Danio rerio: structure, function, evolution, and AHR-dependent regulation in vivo. Arch Biochem Biophys 441:151–167. doi:10.1016/j.abb.2005.07.008

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Boivin GP, Knudsen ES, Nebert DW, Xia Y, Puga A (2010) The aryl hydrocarbon receptor functions as a tumor suppressor of liver carcinogenesis. Cancer Res 70:212–220. doi:10.1158/0008-5472.CAN-09-3090

    Article  CAS  PubMed  Google Scholar 

  • FitzGerald CT, Fernandez-Salguero P, Gonzalez FJ, Nebert DW, Puga A (1996) Differential regulation of mouse Ah receptor gene expression in cell lines of different tissue origins. Arch Biochem Biophys 333:170–178. doi:10.1006/abbi.1996.0378

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald CT, Nebert DW, Puga A (1998) Regulation of mouse Ah receptor (Ahr) gene basal expression by members of the Sp family of transcription factors. DNA Cell Biol 17:811–822. doi:10.1089/dna.1998.17.811

    Article  CAS  PubMed  Google Scholar 

  • Flouriot G, Pakdel F, Valotaire Y (1996) Transcriptional and post-transcriptional regulation of rainbow trout estrogen receptor and vitellogenin gene expression. Mole Cell Endocrinol 124:173–183. doi:10.1016/S0303-7207(96)03960-3

    Article  CAS  Google Scholar 

  • Franc MA, Pohjanvirta R, Tuomisto J, Okey AB (2001) Persistent, low-dose 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure: effect on aryl hydrocarbon receptor expression in a dioxin-resistance model. Toxicol Appl Pharm 175:43–53. doi:10.1006/taap.2001.9222

    Article  CAS  Google Scholar 

  • Fritz WA, Lin TM, Peterson RE (2008) The aryl hydrocarbon receptor (AhR) inhibits vanadate-induced vascular endothelial growth factor (VEGF) production in TRAMP prostates. Carcinogenesis 29:1077–1082. doi:10.1093/carcin/bgn069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii-Kuriyama Y, Mimura J (2005) Molecular mechanisms of AhR functions in the regulation of cytochrome P450 genes. Biochem Biophys Res Commun 338:311–317. doi:10.1016/j.bbrc.2005.08.162

    Article  CAS  PubMed  Google Scholar 

  • Garrison PM, Denison MS (2000) Analysis of the murine AhR gene promoter. J Biochem Mol Toxicol 14:1–10. doi:10.1002/(SICI)1099-0461(2000)14:1<1:AID-JBT1>3.0.CO;2-4

    Article  CAS  PubMed  Google Scholar 

  • Giannone JV, Li W, Probst M, Okey AB (1998) Prolonged depletion of AH receptor without alteration of receptor mRNA levels after treatment of cells in culture with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochem Pharmacol 55:489–497. doi:10.1016/S0006-2952(97)00493-0

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez FJ, Fernandez-Salguero P (1998) The aryl hydrocarbon receptor studies using the AHR-null mice. Drug Metab Dispos 26:1194–1198

    CAS  PubMed  Google Scholar 

  • Hanieh H (2014) Toward understanding the role of aryl hydrocarbon receptor in the immune system: current progress and future trends. Biomed Res Int 2014:520763. doi:10.1155/2014/520763

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanno K, Oda S, Mitani H (2010) Effects of dioxin isomers on induction of AhRs and CYP1A1 in early developmental stage embryos of medaka (Oryzias latipes). Chemosphere 78:830–839. doi:10.1016/j.chemosphere.2009.11.043

    Article  CAS  PubMed  Google Scholar 

  • Harper PA, Riddick DS, Okey AB (2006) Regulating the regulator: factors that control levels and activity of the aryl hydrocarbon receptor. Biochem Pharmacol 72:267–279. doi:10.1016/j.bcp.2006.01.007

    Article  CAS  PubMed  Google Scholar 

  • Hockings JK, Thorne PA, Kemp MQ, Morgan SS, Selmin O, Romagnolo DF (2006) The ligand status of the aromatic hydrocarbon receptor modulates transcriptional activation of BRCA-1 promoter by estrogen. Cancer Res 66:2224–2232. doi:10.1158/0008-5472.CAN-05-1619

    Article  CAS  PubMed  Google Scholar 

  • Iwata H, Nagahama N, Kim EY, Watanabe MX, Sudo A (2010) Effects of in ovo exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on hepatic AHR/ARNT-CYP1A signaling pathways in common cormorants (Phalacrocorax carbo). Comp Biochem Phys C Toxicol Pharmacol 152:224–231. doi:10.1016/j.cbpc.2010.04.010

    Article  Google Scholar 

  • Karchner S, Franks D, Hahn M (2005) AHR1B, a new functional aryl hydrocarbon receptor in zebrafish: tandem arrangement of ahr1b and ahr2 genes. J Biochem 392:153–161. doi:10.1042/BJ20050713

    Article  CAS  Google Scholar 

  • Kolluri SK, Weiss C, Koff A, Göttlicher M (1999) p27Kip1 induction and inhibition of proliferation by the intracellular Ah receptor in developing thymus and hepatoma cells. Genes Dev 13:1742–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota A, Goldstone JV, Lemaire B, Takata M, Woodin BR, Stegeman JJ (2015) Pregnane X receptor and aryl hydrocarbon receptor both are involved in transcriptional regulation of pxr, CYP2 and CYP3 genes in developing zebrafish. Toxicol Sci. doi:10.1093/toxsci/kfu240

    PubMed  Google Scholar 

  • Le Drean Y, Lazennec G, Kern L, Saligaut D, Pakdel F, Valotaire Y (1995) Characterization of an estrogen-responsive element implicated in regulation of the rainbow trout estrogen receptor gene. J Mol Endocrinol 15:37–47. doi:10.1677/jme.0.0150037

    Article  PubMed  Google Scholar 

  • Lee JS, Iwabuchi K, Nomaru K, Nagahama N, Kim EY, Iwata H (2013) Molecular and functional characterization of a novel aryl hydrocarbon receptor isoform, AHR1β, in the chicken (Gallus gallus). Toxicol Sci. doi:10.1093/toxsci/kft192

    PubMed Central  Google Scholar 

  • Lu M, Chang Z, Bae MJ, Oh SM, Chung KH, Park JS (2013) Molecular characterization of the aryl hydrocarbon receptor (AhR) pathway in goldfish (Carassius auratus) exposure to TCDD: the mRNA and protein levels. Fish Shellfish Immun 35:469–475. doi:10.1016/j.fsi.2013.05.002

    Article  CAS  Google Scholar 

  • Marlowe JL, Puga A (2005) Aryl hydrocarbon receptor, cell cycle regulation, toxicity, and tumorigenesis. J Cell Biochem 96:1174–1184. doi:10.1002/jcb.20656

    Article  CAS  PubMed  Google Scholar 

  • Matthews J, Wihlén B, Tujague M, Wan J, Ström A, Gustafsson JA (2006) Estrogen receptor (ER) β modulates ERα-mediated transcriptional activation by altering the recruitment of c-Fos and c-Jun to estrogen-responsive promoters. Mol Endocrinol 20(3):534–543. doi:10.1210/me.2005-0140#sthash.JsYQ0P6Y.dpuf

    Article  CAS  PubMed  Google Scholar 

  • Meyer JN, Wassenberg DM, Karchner SI, Hahn ME, DiGiulio RT (2003) Expression and inducibility of aryl hydrocarbon receptor pathway genes in wild-caught killifish (Fundulus heteroclitus) with different contaminant-exposure histories. Environ Toxicol Chem 22(10):2337–2343. doi:10.1897/02-495

    Article  CAS  PubMed  Google Scholar 

  • Murray IA, Patterson AD, Perdew GH (2014) Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat Rev Cancer 14:801–814. doi:10.1038/nrc3846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nebert DW, Roe AL, Dieter MZ, Solis WA, Yang YI, Dalton TP (2000) Role of the aromatic hydrocarbon receptor and [Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis. Biochem Pharmacol 59:65–85. doi:10.1016/S0006-2952(99)00310-X

    Article  CAS  PubMed  Google Scholar 

  • Nelson ER, Habibi HR (2013) Estrogen receptor function and regulation in fish and other vertebrates. Gen Comp Endocrinol 192:15–24. doi:10.1016/j.ygcen.2013.03.032

    Article  CAS  PubMed  Google Scholar 

  • Novotna A, Korhonova M, Bartonkova I, Soshilov AA, Denison MS, Bogdanova K, Kolar M, Bednar P, Dvorak Z (2014) Enantiospecific effects of ketoconazole on aryl hydrocarbon receptor. PLoS One 9:e101832. doi:10.1371/journal.pone.0101832

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng L, Mayhew CN, Schnekenburger M, Knudsen ES, Puga A (2008) Repression of Ah receptor and induction of transforming growth factor-β genes in DEN-induced mouse liver tumors. Toxicol 246:242–247. doi:10.1016/j.tox.2008.01.002

    Article  CAS  Google Scholar 

  • Petrulis JR, Perdew GH (2002) The role of chaperone proteins in the aryl hydrocarbon receptor core complex. Chem-Biol Interact 141:25–40. doi:10.1016/S0009-2797(02)00064-9

    Article  CAS  PubMed  Google Scholar 

  • Pitt JA, Feng L, Abbott BD, Schmid J, Batt RE, Costich TG et al (2001) Expression of AhR and ARNT mRNA in cultured human endometrial explants exposed to TCDD. Toxicol Sci 62:289–298. doi:10.1093/toxsci/62.2.289

    Article  CAS  PubMed  Google Scholar 

  • Poland A, Glover E, Kende AS (1976) Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J Biol Chem 251:4936–4946

    CAS  PubMed  Google Scholar 

  • Pollenz RS (2002) The mechanism of AH receptor protein down-regulation (degradation) and its impact on AH receptor-mediated gene regulation. Chem-Biol Interact 141:41–61. doi:10.1016/S0009-2797(02)00065-0

    Article  CAS  PubMed  Google Scholar 

  • Powell WH, Bright R, Bello SM, Hahn ME (2000) Developmental and tissue-specific expression of AHR1, AHR2, and ARNT2 in dioxin-sensitive and-resistant populations of the marine fish Fundulus heteroclitus. Toxicol Sci 57(2):229–239. doi:10.1093/toxsci/57.2.229

    Article  CAS  PubMed  Google Scholar 

  • Prokipcak RD, Okey AB (1991) Downregulation of the Ah receptor in mouse hepatoma cells treated in culture with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Can J Physiol Pharm 69:1204–1210. doi:10.1139/y91-176

    Article  CAS  Google Scholar 

  • Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E et al (2008) Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71. doi:10.1038/nature06880

    Article  CAS  PubMed  Google Scholar 

  • Roy NK, Wirgin I (1997) Characterization of the aromatic hydrocarbon receptor gene and its expression in Atlantic tomcod. Arch Biochem Biophys 344:373–386. doi:10.1006/abbi.1997.0238

    Article  CAS  PubMed  Google Scholar 

  • Schmidt JV, Carver LA, Bradfield CA (1993) Molecular characterization of the murine Ahr gene. Organization, promoter analysis, and chromosomal assignment. J Biol Chem 268:22203–22209

    CAS  PubMed  Google Scholar 

  • Sonneveld E, Jonas A, Meijer OC, Brouwer A, Van der Burg B (2007) Glucocorticoid-enhanced expression of dioxin target genes through regulation of the rat aryl hydrocarbon receptor. Toxicol Sci 99:455–469. doi:10.1093/toxsci/kfm176

    Article  CAS  PubMed  Google Scholar 

  • Soshilov AA, Denison MS (2014) DNA binding (gel retardation assay) analysis for identification of aryl hydrocarbon (Ah) receptor agonists and antagonists. In: Caldwell GW, Yan Z (eds) Optimization in Drug Discovery, vol 18. Humana Press, New York, pp 207–219. doi:10.1007/978-1-62703-742-6_12

    Chapter  Google Scholar 

  • Sun YV, Boverhof DR, Burgoon LD, Fielden MR, Zacharewski TR (2004) Comparative analysis of dioxin response elements in human, mouse and rat genomic sequences. Nucleic Acids Res 32:4512–4523. doi:10.1093/nar/gkh782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanguay RL, Abnet CC, Heideman W, Peterson RE (1999) Cloning and characterization of the zebrafish (Danio rerio) aryl hydrocarbon receptor. Biochim Biophys Acta 1444:35–48. doi:10.1016/S0167-4781(98)00252-8

    Article  CAS  PubMed  Google Scholar 

  • Wójcik D, Antos PA, Katarzyńska D, Hrabia A, Sechman A (2015) Effect of PCB 126 on aryl hydrocarbon receptor 1 (AHR1) and AHR1 nuclear translocator 1 (ARNT1) mRNA expression and CYP1 monooxygenase activity in chicken (Gallus domesticus) ovarian follicles. Toxicol Lett 239:73–80. doi:10.1016/j.toxlet.2015.09.005

    Article  PubMed  Google Scholar 

  • Yamauchi M, Kim EY, Iwata H, Tanabe S (2005) Molecular characterization of the aryl hydrocarbon receptors (AHR1 and AHR2) from red seabream (Pagrus major). Comp Biochem Phys C 141:177–187. doi:10.1016/j.cca.2005.06.003

    Google Scholar 

  • Yamauchi M, Kim EY, Iwata H, Shima Y, Tanabe S (2006) Toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in developing red seabream (Pagrus major) embryo: an association of morphological deformities with AHR1, AHR2 and CYP1A expressions. Aquat Toxicol 80:166–179. doi:10.1016/j.aquatox.2006.08.006

    Article  CAS  PubMed  Google Scholar 

  • ZeRuth GT (2008) Isolation and Functional Characterization of a Dioxin-inducible CYP1A Regulatory Region from Zebrafish (Danio Rerio) (Order No. 3326040). Available from ProQuest Dissertations & Theses A&I. (304460216). http://search.proquest.com/docview/304460216?accountid=11931

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology to E.-Y. Kim. (2013R1A1A2A10010043, 2012K2A2A4021504). This study was also supported by Grants-in-Aid for Scientific Research (S) (26220103) from Japan Society of the Promotion of Science (JSPS). This research was supported in part by a grant (to MSD) from the National Institute of Environmental Health Sciences (R01ES07685) and the California Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Young Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 286 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bak, SM., Iida, M., Soshilov, A.A. et al. Auto-induction mechanism of aryl hydrocarbon receptor 2 (AHR2) gene by TCDD-activated AHR1 and AHR2 in the red seabream (Pagrus major). Arch Toxicol 91, 301–312 (2017). https://doi.org/10.1007/s00204-016-1732-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1732-9

Keywords

Navigation