Skip to main content
Log in

Zebrafish cardiotoxicity: the effects of CYP1A inhibition and AHR2 knockdown following exposure to weak aryl hydrocarbon receptor agonists

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates many of the toxic effects of dioxin-like compounds (DLCs) and some polycyclic aromatic hydrocarbons (PAHs). Strong AHR agonists, such as certain polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), cause severe cardiac teratogenesis in fish embryos. Moderately strong AHR agonists, such as benzo[a]pyrene and β-naphthoflavone, have been shown to cause similar cardiotoxic effects when coupled with a cytochrome P450 1A (CYP1A) inhibitor, such as fluoranthene (FL). We sought to determine if weak AHR agonists, when combined with a CYP1A inhibitor (FL) or CYP1A morpholino gene knockdown, are capable of causing cardiac deformities similar to moderately strong AHR agonists (Wassenberg and Di Giulio Environ Health Perspect 112(17):1658–1664, 2004a; Wassenberg and Di Giulio Res 58(2–5):163–168, 2004b; Billiard et al. Toxicol Sci 92(2):526–536, 2006; Van Tiem and Di Giulio Toxicol Appl Pharmacol 254(3):280–287, 2011). The weak AHR agonists included the following: carbaryl, phenanthrene, 2-methylindole, 3-methylindole, indigo, and indirubin. Danio rerio (zebrafish) embryos were first exposed to weak AHR agonists at equimolar concentrations. The agonists were assessed for their relative potency as inducers of CYP1 enzyme activity, measured by the ethoxyresorufin-O-deethylase (EROD) assay, and cardiac deformities. Carbaryl, 2-methylindole, and 3-methylindole induced the highest CYP1A activity in zebrafish. Experiments were then conducted to determine the individual cardiotoxicity of each compound. Next, zebrafish were coexposed to each agonist (at concentrations below those determined to be cardiotoxic) and FL in combination to assess if CYP1A inhibition could induce cardiac deformities. Carbaryl, 2-methylindole, 3-methylindole, and phenanthrene significantly increased pericardial edema relative to controls when combined with FL. To further evaluate the interaction of the weak AHR agonists and CYP1A inhibition, a morpholino was used to knockdown CYP1A expression, and embryos were then exposed to each agonist individually. In embryos exposed to 2-methylindole, CYP1A knockdown caused a similar level of pericardial edema to that caused by exposure to 2-methylindole and FL. The results showed a complex pattern of cardiotoxic response to weak agonist inhibitor exposure and morpholino-knockdown. However, CYP1A knockdown in phenanthrene and 3-methylindole only moderately increased pericardial edema relative to coexposure to FL. AHR2 expression was also knocked down using a morpholino to determine its role in mediating the observed cardiac teratogenesis. Knockdown of AHR2 did not rescue the pericardial edema as previously observed with strong AHR agonists. While some of the cardiotoxicity observed may be attributed to the combination of weak AHR agonism and CYP1A inhibition, other weak AHR agonists appear to be causing cardiotoxicity through an AHR2-independent mechanism. The data show that CYP1A is protective of the cardiac toxicity associated with weak AHR agonists and that knockdown can generate pericardial edema, but these findings are also suggestive of differing mechanisms of cardiac toxicity among known AHR agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adachi J, Mori Y et al (2001) Indirubin and indigo are potent aryl hydrocarbon receptor ligands present in human urine. J Biol Chem 276(34):31475–31478

    Article  CAS  Google Scholar 

  • Adachi J, Mori Y et al (2004) Comparison of gene expression patterns between 2,3,7,8-tetrachlorodibenzo-p-dioxin and a natural arylhydrocarbon receptor ligand, indirubin. Toxicol Sci 80(1):161–169

    Article  CAS  Google Scholar 

  • Andreasen EA, Spitsbergen JM et al (2002) Tissue-specific expression of AHR2, ARNT2, and CYP1A in zebrafish embryos and larvae: effects of developmental stage and 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure. Toxicol Sci 68(2):403–419

    Article  CAS  Google Scholar 

  • Antkiewicz DS, Burns CG et al (2005) Heart malformation is an early response to TCDD in embryonic zebrafish. Toxicol Sci 84(2):368–377

    Article  CAS  Google Scholar 

  • Barron MG, Carls MG et al (2004) Evaluation of fish early life-stage toxicity models of chronic embryonic exposures to complex polycyclic aromatic hydrocarbon mixtures. Toxicol Sci 78(1):60–67

    Article  CAS  Google Scholar 

  • Billiard SM, Timme-Laragy AR et al (2006) The role of the aryl hydrocarbon receptor pathway in mediating synergistic developmental toxicity of polycyclic aromatic hydrocarbons to zebrafish. Toxicol Sci 92(2):526–536

    Article  CAS  Google Scholar 

  • Bohonowych JE, Denison MS (2007) Persistent binding of ligands to the aryl hydrocarbon receptor. Toxicol Sci 98(1):99–109

    Article  CAS  Google Scholar 

  • Cantrell SM, Lutz LH et al (1996) Embryotoxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD): the embryonic vasculature is a physiological target for TCDD-induced DNA damage and apoptotic cell death in medaka (Orizias latipes). Toxicol Appl Pharmacol 141(1):23–34

    Article  CAS  Google Scholar 

  • Carls MG, Rice SD et al (1999) Sensitivity of fish embryos to weathered crude oil: part I. Low-level exposure during incubation causes malformations, genetic damage, and mortality in larval Pacific herring (Clupea pallasi). Environ Toxicol Chem 18(3):481–493

    Article  CAS  Google Scholar 

  • Carney SA, Peterson RE et al (2004) 2,3,7,8-Tetrachlorodibenzo-p-dioxin activation of the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator pathway causes developmental toxicity through a CYP1A-independent mechanism in zebrafish. Mol Pharmacol 66(3):512–521

    CAS  Google Scholar 

  • Casado S, Alonso M et al (2006) Activation of the aryl hydrocarbon receptor by carbaryl: computational evidence of the ability of carbaryl to assume a planar conformation. Environ Toxicol Chem 25(12):3141–3147

    Article  CAS  Google Scholar 

  • Chen YH, Riby J et al (1995) Regulation of Cyp1a1 by indolo[3,2-b]carbazole in murine hepatoma cells. J Biol Chem 270(38):22548–22555

    Article  CAS  Google Scholar 

  • Clark BW, Di Giulio RT (2012) Fundulus heteroclitus adapted to PAHs are cross-resistant to multiple insecticides. Ecotoxicology 21(2):465–474

    Article  CAS  Google Scholar 

  • Clark BW, Matson CW et al (2010) AHR2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and PCB-126 in Atlantic killifish (Fundulus heteroclitus). Aquat Toxicol 99(2):232–240

    Article  CAS  Google Scholar 

  • D’Agostino J, Zhuo XL et al (2009) The pneumotoxin 3-methylindole is a substrate and a mechanism-based inactivator of CYP2A13, a human cytochrome P450 enzyme preferentially expressed in the respiratory tract. Drug Metab Dispos 37(10):2018–2027

    Article  Google Scholar 

  • Denison MS, Heath-Pagliuso S (1998) The Ah receptor: a regulator of the biochemical and toxicological actions of structurally diverse chemicals. Bull Environ Contam Toxicol 61(5):557–568

    Article  CAS  Google Scholar 

  • Denison MS, Nagy SR (2003) Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43:309–334

    Article  CAS  Google Scholar 

  • Denison MS, Soshilov AA et al (2011) Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol Sci 124(1):1–22

    Article  CAS  Google Scholar 

  • Dong W, Teraoka H et al (2002) 2,3,7,8-Tetrachlorodibenzo-p-dioxin toxicity in the zebrafish embryo: local circulation failure in the dorsal midbrain is associated with increased apoptosis. Toxicol Sci 69(1):191–201

    Article  CAS  Google Scholar 

  • Fukuto TR (1990) Mechanism of action of organophosphorus and carbamate insecticides. Environ Health Perspect 87:245–254

    Article  CAS  Google Scholar 

  • Garner LVT, Brown DR et al (2013) Knockdown of AHR1A but not AHR1B exacerbates PAH and PCB-126 toxicity in zebrafish (Danio rerio) embryos. Aquat Toxicol 142:336–346

    Article  Google Scholar 

  • Gillner M, Bergman J et al (1993) Interactions of indolo[3,2-b]carbazoles and related polycyclic aromatic hydrocarbons with specific binding sites for 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat liver. Mol Pharmacol 44(2):336–345

    CAS  Google Scholar 

  • Guengerich FP, Martin MV et al (2004) Aryl hydrocarbon receptor response to indigoids in vitro and in vivo. Arch Biochem Biophys 423(2):309–316

    Article  CAS  Google Scholar 

  • Henry TR, Spitsbergen JM et al (1997) Early life stage toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish (Danio rerio). Toxicol Appl Pharmacol 142(1):56–68

    Article  CAS  Google Scholar 

  • Incardona JP, Collier TK et al (2004) Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicol Appl Pharmacol 196(2):191–205

    Article  CAS  Google Scholar 

  • Incardona JP, Carls MG et al (2005) Aryl hydrocarbon receptor-independent toxicity of weathered crude oil during fish development. Environ Health Perspect 113(12):1755–1762

    Article  CAS  Google Scholar 

  • Incardona JP, Carls MG et al (2009) Cardiac arrhythmia is the primary response of embryonic pacific herring (Clupea pallasi) exposed to crude oil during weathering. Environ Sci Technol 43(1):201–207

    Article  CAS  Google Scholar 

  • Kafafi SA, Afeefy HY et al (1993) Relationship between aryl-hydrocarbon receptor-binding, induction of aryl-hydrocarbon hydroxylase and 7-ethoxyresorufin o-deethylase enzymes, and toxic activities of aromatic xenobiotics in animals—a new model. Chem Res Toxicol 6(3):328–334

    Article  CAS  Google Scholar 

  • Karchner SI, Franks DG et al (2005) AHR1B, a new functional aryl hydrocarbon receptor in zebrafish: tandem arrangement of ahr1b and ahr2 genes. Biochem J 392:153–161

    Article  CAS  Google Scholar 

  • Lin CC, Hui MNY et al (2007) Toxicity and cardiac effects of carbaryl in early developing zebrafish (Danio rerio) embryos. Toxicol Appl Pharmacol 222(2):159–168

    Article  CAS  Google Scholar 

  • Marty GD, Short JW et al (1997) Ascites, premature emergence, increased gonadal cell apoptosis, and cytochrome P4501A induction in pink salmon larvae continuously exposed to oil-contaminated gravel during development. Can J Zool-Rev Can Zool 75(6):989–1007

    Article  CAS  Google Scholar 

  • Meyer J, Di Giulio R (2002) Patterns of heritability of decreased EROD activity and resistance to PCB 126-induced teratogenesis in laboratory-reared offspring of killifish (Fundulus heteroclitus) from a creosote-contaminated site in the Elizabeth River, VA, USA. Mar Environ Res 54(3–5):621–626

    Article  CAS  Google Scholar 

  • Meyer JN, Nacci DE et al (2002) Cytochrome P4501A (CYP1A) in killifish (Fundulus heteroclitus): heritability of altered expression and relationship to survival in contaminated sediments. Toxicol Sci 68(1):69–81

    Article  CAS  Google Scholar 

  • Middaugh DP, Shelton ME et al (1998) Preliminary observations on responses of embryonic and larval Pacific herring, Clupea pallasi, to neutral fraction biodegradation products of weathered Alaska North Slope oil. Arch Environ Contam Toxicol 34(2):188–196

    Article  CAS  Google Scholar 

  • Mu JL, Wang XH et al (2012) The role of cytochrome P4501A activity inhibition in three- to five-ringed polycyclic aromatic hydrocarbons embryotoxicity of marine medaka (Oryzias melastigma). Mar Pollut Bull 64(7):1445–1451

    Article  CAS  Google Scholar 

  • Nacci D, Coiro L et al (1998) Nondestructive indicator of ethoxyresorufin-O-deethylase activity in embryonic fish. Environ Toxicol Chem 17(12):2481–2486

    Article  CAS  Google Scholar 

  • Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26(2):216–220

    Article  CAS  Google Scholar 

  • Nguyen LP, Bradfield CA (2008) The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol 21(1):102–116

    Article  CAS  Google Scholar 

  • Phelan D, Winter GM et al (1998) Activation of the Ah receptor signal transduction pathway by bilirubin and biliverdin. Arch Biochem Biophys 357(1):155–163

    Article  CAS  Google Scholar 

  • Poland A, Knutson JC (1982) 2,3,7,8-Tetrachlorodibenzo-para-dioxin and related halogenated aromatic-hydrocarbons—examination of the mechanism of toxicity. Annu Rev Pharmacol Toxicol 22:517–554

    Article  CAS  Google Scholar 

  • Safe S (1990) Polychlorinated-biphenyls (Pcbs), dibenzo-para-dioxins (Pcdds), dibenzofurans (Pcdfs), and related-compounds—environmental and mechanistic considerations which support the development of toxic equivalency factors (Tefs). Crit Rev Toxicol 21(1):51–88

    Article  CAS  Google Scholar 

  • Solomon HM, Weis JS (1979) Abnormal circulatory development in medaka caused by the insecticides carbaryl, malathion and parathion. Teratology 19(1):51–62

    Article  CAS  Google Scholar 

  • Song JS, Clagett-Dame M et al (2002) A ligand for the aryl hydrocarbon receptor isolated from lung. Proc Natl Acad Sci U S A 99(23):14694–14699

    Article  CAS  Google Scholar 

  • Spink BC, Hussain MM et al (2003) Transient induction of cytochromes P450 1A1 and 1B1 in MCF-7 human breast cancer cells by indirubin. Biochem Pharmacol 66(12):2313–2321

    Article  CAS  Google Scholar 

  • Spink DC, Wu SJ et al (2008) Induction of CYP1A1 and CYP1B1 by benzo(k)fluoranthene and benzo(a)pyrene in T-47D human breast cancer cells: roles of PAH interactions and PAH metabolites. Toxicol Appl Pharmacol 226(3):213–224

    Article  CAS  Google Scholar 

  • Sugihara K, Kitamura S et al (2004) Aryl hydrocarbon receptor-mediated induction of microsomal drug-metabolizing enzyme activity by indirubin and indigo. Biochem Biophys Res Commun 318(2):571–578

    Article  CAS  Google Scholar 

  • Teraoka H, Dong W et al (2003) Induction of cytochrome P450 1A is required for circulation failure and edema by 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish. Biochem Biophys Res Commun 304(2):223–228

    Article  CAS  Google Scholar 

  • Van Tiem LA, Di Giulio RT (2011) AHR2 knockdown prevents PAH-mediated cardiac toxicity and XRE- and ARE-associated gene induction in zebrafish (Danio rerio). Toxicol Appl Pharmacol 254(3):280–287

    Article  Google Scholar 

  • Vines CA, Robbins T et al (2000) The effects of diffusible creosote-derived compounds on development in Pacific herring (Clupea pallasi). Aquat Toxicol 51(2):225–239

    Article  CAS  Google Scholar 

  • Walker MK, Spitsbergen JM et al (1991) 2,3,7,8-Tetrachlorodibenzo-para-dioxin (TCDD) toxicity during early life stage development of Lake Trout (Salvelinus-Namaycush). Can J Fish Aquat Sci 48(5):875–883

    Article  CAS  Google Scholar 

  • Waller CL, Mckinney JD (1995) 3-Dimensional quantitative structure-activity-relationships of dioxins and dioxin-like compounds—model validation and Ah receptor characterization. Chem Res Toxicol 8(6):847–858

    Article  CAS  Google Scholar 

  • Wassenberg DM, Di Giulio RT (2004a) Synergistic embryotoxicity of polycyclic aromatic hydrocarbon aryl hydrocarbon receptor Agonists with cytochrome P4501A inhibitors in Fundulus heteroclitus. Environ Health Perspect 112(17):1658–1664

    Article  CAS  Google Scholar 

  • Wassenberg DM, Di Giulio RT (2004b) Teratogenesis in Fundulus heteroclitus embryos exposed to a creosote-contaminated sediment extract and CYP1A inhibitors. Mar Environ Res 58(2–5):163–168

    Article  CAS  Google Scholar 

  • Wassenberg DM, Nerlinger AL et al (2005) Effects of the polycyclic aromatic hydrocarbon heterocycles, carbazole and dibenzothiophene, on in vivo and in vitro CYP1A activity and polycyclic aromatic hydrocarbon-derived embryonic deformities. Environ Toxicol Chem 24(10):2526–2532

    Article  CAS  Google Scholar 

  • Weems JM, Cutler NS et al (2009) 3-Methylindole is mutagenic and a possible pulmonary carcinogen. Toxicol Sci 112(1):59–67

    Article  CAS  Google Scholar 

  • Wei YD, Helleberg H et al (1998) Rapid and transient induction of CYP1A1 gene expression in human cells by the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole. Chem Biol Interact 110(1–2):39–55

    Article  CAS  Google Scholar 

  • Willett KL, Wassenberg D et al (2001) In vivo and in vitro inhibition of CYP1A-dependent activity in Fundulus heteroclitus by the polynuclear aromatic hydrocarbon fluoranthene. Toxicol Appl Pharmacol 177(3):264–271

    Article  CAS  Google Scholar 

  • Wu SJ, Spink DC et al (2003) Quantitation of CYP1A1 and 1B1 mRNA in polycyclic aromatic hydrocarbon-treated human T-47D and HepG2 cells by a modified bDNA assay using fluorescence detection. Anal Biochem 312(2):162–166

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank summer research students Liting Chen and Kelsey Johnson for their assistance with exposures and screening. This work was supported by the National Institute of Environmental Health supported Superfund Research Program (P42-ES-10356) and the Duke University Integrated Toxicology and Environmental Health Program (T32-ES-007031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Brown.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, D.R., Clark, B.W., Garner, L.V.T. et al. Zebrafish cardiotoxicity: the effects of CYP1A inhibition and AHR2 knockdown following exposure to weak aryl hydrocarbon receptor agonists. Environ Sci Pollut Res 22, 8329–8338 (2015). https://doi.org/10.1007/s11356-014-3969-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3969-2

Key words

Navigation