Skip to main content

Advertisement

Log in

Novel roles for AhR and ARNT in the regulation of alcohol dehydrogenases in human hepatic cells

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The mechanisms by which pollutants participate in the development of diverse pathologies are not completely understood. The pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activates the AhR (aryl hydrocarbon receptor) signaling pathway. We previously showed that TCDD (25 nM, 30 h) decreased the expression of several alcohol metabolism enzymes (cytochrome P450 2E1, alcohol dehydrogenases ADH1, 4 and 6) in differentiated human hepatic cells (HepaRG). Here, we show that, as rapidly as 8 h after treatment (25 nM TCDD) ADH expression decreased 40 % (p < 0.05). ADH1 and 4 protein levels decreased 40 and 27 %, respectively (p < 0.05), after 72 h (25 nM TCDD). The protein half-lives were not modified by TCDD which suggests transcriptional regulation of expression. The AhR antagonist CH-223191 or AhR siRNA reduced the inhibitory effect of 25 nM TCDD on ADH1A, 4 and 6 expression 50–100 % (p < 0.05). The genomic pathway (via the AhR/ARNT complex) and not the non-genomic pathway involving c-SRC mediated these effects. Other AhR ligands (3-methylcholanthrene and PCB 126) decreased ADH1B, 4 and 6 mRNAs by more than 78 and 55 %, respectively (p < 0.01). TCDD also regulated the expression of ADH4 in the HepG2 human hepatic cell line, in primary human hepatocytes and in C57BL/6J mouse liver. In conclusion, activation of the AhR/ARNT signaling pathway by AhR ligands represents a novel mechanism for regulating the expression of ADHs. These effects may be implicated in the toxicity of AhR ligands as well as in the alteration of ethanol or retinol metabolism and may be associated further with higher risk of liver diseases or/and alcohol abuse disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alavanja MCR, Dosemeci M, Samanic C et al (2004) Pesticides and lung cancer risk in the agricultural health study cohort. Am J Epidemiol 160:876–885. doi:10.1093/aje/kwh290

    Article  PubMed  Google Scholar 

  • Ambolet-Camoit A, Ottolenghi C, Leblanc A et al (2015) Two persistent organic pollutants which act through different xenosensors (alpha-endosulfan and 2,3,7,8 tetrachlorodibenzo-p-dioxin) interact in a mixture and downregulate multiple genes involved in human hepatocyte lipid and glucose metabolism. Biochimie 116:79–91. doi:10.1016/j.biochi.2015.07.003

    Article  CAS  PubMed  Google Scholar 

  • Aninat C, Piton A, Glaise D et al (2006) Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug Metab Dispos Biol Fate Chem 34:75–83. doi:10.1124/dmd.105.006759

    Article  CAS  PubMed  Google Scholar 

  • Barouki R, Coumoul X, Fernandez-Salguero PM (2007) The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Lett 581:3608–3615. doi:10.1016/j.febslet.2007.03.046

    Article  CAS  PubMed  Google Scholar 

  • Bauman JW, Goldsworthy TL, Dunn CS, Fox TR (1995) Inhibitory effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on rat hepatocyte proliferation induced by 2/3 partial hepatectomy. Cell Prolif 28:437–451

    Article  CAS  PubMed  Google Scholar 

  • Bhopale KK, Wu H, Boor PJ et al (2006) Metabolic basis of ethanol-induced hepatic and pancreatic injury in hepatic alcohol dehydrogenase deficient deer mice. Alcohol 39:179–188. doi:10.1016/j.alcohol.2006.09.005

    Article  CAS  PubMed  Google Scholar 

  • Braeuning A, Thomas M, Hofmann U et al (2015) Comparative analysis and functional characterization of HC-AFW1 hepatocarcinoma cells: CYP expression and induction by nuclear receptor agonists. Drug Metab Dispos Biol Fate Chem. doi:10.1124/dmd.115.064667

    Google Scholar 

  • Bui L-C, Tomkiewicz C, Chevallier A et al (2009) Nedd9/Hef1/Cas-L mediates the effects of environmental pollutants on cell migration and plasticity. Oncogene 28:3642–3651. doi:10.1038/onc.2009.224

    Article  CAS  PubMed  Google Scholar 

  • Carlson EA, McCulloch C, Koganti A et al (2009) Divergent transcriptomic responses to aryl hydrocarbon receptor agonists between rat and human primary hepatocytes. Toxicol Sci Off J Soc Toxicol 112:257–272. doi:10.1093/toxsci/kfp200

    Article  CAS  Google Scholar 

  • Chang JS, Straif K, Guha N (2012) The role of alcohol dehydrogenase genes in head and neck cancers: a systematic review and meta-analysis of ADH1B and ADH1C. Mutagenesis 27:275–286. doi:10.1093/mutage/ger073

    Article  CAS  PubMed  Google Scholar 

  • Clissold PM, Hainey S, Bishop JO (1984) Messenger RNAs coding for mouse major urinary proteins are differentially induced by testosterone. Biochem Genet 22:379–387

    Article  CAS  PubMed  Google Scholar 

  • Dannenberg LO, Chen H-J, Edenberg HJ (2005) GATA-2 and HNF-3beta regulate the human alcohol dehydrogenase 1A (ADH1A) gene. DNA Cell Biol 24:543–552. doi:10.1089/dna.2005.24.543

    Article  CAS  PubMed  Google Scholar 

  • Denison MS, Soshilov AA, He G et al (2011) Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol Sci Off J Soc Toxicol 124:1–22. doi:10.1093/toxsci/kfr218

    Article  CAS  Google Scholar 

  • Dong Y, Poellinger L, Okret S et al (1988) Regulation of gene expression of class I alcohol dehydrogenase by glucocorticoids. Proc Natl Acad Sci USA 85:767–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duester G, Farrés J, Felder MR et al (1999) Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family. Biochem Pharmacol 58:389–395

    Article  CAS  PubMed  Google Scholar 

  • Edenberg HJ (2000) Regulation of the mammalian alcohol dehydrogenase genes. Prog Nucleic Acid Res Mol Biol 64:295–341

    Article  CAS  PubMed  Google Scholar 

  • Fader KA, Nault R, Ammendolia DA et al (2015) 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) Alters Lipid Metabolism and Depletes Immune Cell Populations in the Jejunum of C57BL/6 Mice. Toxicol Sci Off J Soc Toxicol. doi:10.1093/toxsci/kfv206

    Google Scholar 

  • Fletcher N, Wahlström D, Lundberg R et al (2005) 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) alters the mRNA expression of critical genes associated with cholesterol metabolism, bile acid biosynthesis, and bile transport in rat liver: a microarray study. Toxicol Appl Pharmacol 207:1–24. doi:10.1016/j.taap.2004.12.003

    Article  CAS  PubMed  Google Scholar 

  • Forgacs AL, Dere E, Angrish MM, Zacharewski TR (2013) Comparative analysis of temporal and dose-dependent TCDD-elicited gene expression in human, mouse, and rat primary hepatocytes. Toxicol Sci Off J Soc Toxicol 133:54–66. doi:10.1093/toxsci/kft028

    Article  CAS  Google Scholar 

  • Guyot E, Chevallier A, Barouki R, Coumoul X (2013) The AhR twist: ligand-dependent AhR signaling and pharmaco-toxicological implications. Drug Discov Today 18:479–486. doi:10.1016/j.drudis.2012.11.014

    Article  CAS  PubMed  Google Scholar 

  • He L, Simmen FA, Ronis MJJ, Badger TM (2004) Post-transcriptional regulation of sterol regulatory element-binding protein-1 by ethanol induces class I alcohol dehydrogenase in rat liver. J Biol Chem 279:28113–28121. doi:10.1074/jbc.M400906200

    Article  CAS  PubMed  Google Scholar 

  • Hellgren M, Strömberg P, Gallego O et al (2007) Alcohol dehydrogenase 2 is a major hepatic enzyme for human retinol metabolism. Cell Mol Life Sci CMLS 64:498–505. doi:10.1007/s00018-007-6449-8

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Tobías A, Julián-Sánchez A, Piña E, Riveros-Rosas H (2011) Natural alcohol exposure: is ethanol the main substrate for alcohol dehydrogenases in animals? Chem Biol Interact 191:14–25. doi:10.1016/j.cbi.2011.02.008

    Article  PubMed  Google Scholar 

  • Hines RN, McCarver DG (2002) The ontogeny of human drug-metabolizing enzymes: phase I oxidative enzymes. J Pharmacol Exp Ther 300:355–360. doi:10.1124/jpet.300.2.355

    Article  CAS  PubMed  Google Scholar 

  • Höög J-O, Ostberg LJ (2011) Mammalian alcohol dehydrogenases–a comparative investigation at gene and protein levels. Chem Biol Interact 191:2–7. doi:10.1016/j.cbi.2011.01.028

    Article  PubMed  Google Scholar 

  • Huang W, Booth DM, Cane MC et al (2014) Fatty acid ethyl ester synthase inhibition ameliorates ethanol-induced Ca2+-dependent mitochondrial dysfunction and acute pancreatitis. Gut 63:1313–1324. doi:10.1136/gutjnl-2012-304058

    Article  CAS  PubMed  Google Scholar 

  • Ishii Y, Kato H, Hatsumura M et al (2001) Effects of a highly toxic coplanar polychlorinated biphenyl, 3,3′,4,4′,5-pentachlorobiphenyl on intermediary metabolism: reduced triose phosphate content in rat liver cytosol. Fukuoka Igaku Zasshi Hukuoka Acta Medica 92:190–200

    CAS  PubMed  Google Scholar 

  • Kaphalia L, Calhoun WJ (2013) Alcoholic lung injury: metabolic, biochemical and immunological aspects. Toxicol Lett 222:171–179. doi:10.1016/j.toxlet.2013.07.016

    Article  CAS  PubMed  Google Scholar 

  • Kim S-H, Henry EC, Kim D-K et al (2006) Novel compound 2-methyl-2H-pyrazole-3-carboxylic acid (2-methyl-4-o-tolylazo-phenyl)-amide (CH-223191) prevents 2,3,7,8-TCDD-induced toxicity by antagonizing the aryl hydrocarbon receptor. Mol Pharmacol 69:1871–1878. doi:10.1124/mol.105.021832

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Sandell LL, Trainor PA et al (2012) Alcohol and aldehyde dehydrogenases: retinoid metabolic effects in mouse knockout models. Biochim Biophys Acta 1821:198–205. doi:10.1016/j.bbalip.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  • Larsen GL, Bergman A, Klasson-Wehler E (1990) A methylsulphonyl metabolite of a polychlorinated biphenyl can serve as a ligand for alpha 2mu-globulin in rat and major-urinary-protein in mice. Xenobiotica Fate Foreign Compd Biol Syst 20:1343–1352. doi:10.3109/00498259009046632

    Article  CAS  Google Scholar 

  • Lee D-H, Steffes MW, Sjödin A et al (2010) Low dose of some persistent organic pollutants predicts type 2 diabetes: a nested case-control study. Environ Health Perspect 118:1235–1242. doi:10.1289/ehp.0901480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Ma Y, Yang J, Qin H (2011) Upregulated and downregulated proteins in hepatocellular carcinoma: a systematic review of proteomic profiling studies. Omics J Integr Biol 15:61–71. doi:10.1089/omi.2010.0061

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego Calif 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  • Lo R, Matthews J (2012) High-resolution genome-wide mapping of AHR and ARNT binding sites by ChIP-Seq. Toxicol Sci Off J Soc Toxicol 130:349–361. doi:10.1093/toxsci/kfs253

    Article  CAS  Google Scholar 

  • Magne L, Blanc E, Marchand A et al (2007) Stabilization of IGFBP-1 mRNA by ethanol in hepatoma cells involves the JNK pathway. J Hepatol 47:691–698. doi:10.1016/j.jhep.2007.05.018

    Article  CAS  PubMed  Google Scholar 

  • McCarver DG, Hines RN (2002) The ontogeny of human drug-metabolizing enzymes: phase II conjugation enzymes and regulatory mechanisms. J Pharmacol Exp Ther 300:361–366. doi:10.1124/jpet.300.2.361

    Article  CAS  PubMed  Google Scholar 

  • Morel Y, de Waziers I, Barouki R (2000) A repressive cross-regulation between catalytic and promoter activities of the CYP1A1 and CYP2E1 genes: role of H(2)O(2). Mol Pharmacol 57:1158–1164

    CAS  PubMed  Google Scholar 

  • Mutka SC, Green LH, Verderber EL et al (2012) ADH IB expression, but not ADH III, is decreased in human lung cancer. PLoS One 7:e52995. doi:10.1371/journal.pone.0052995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada H, Honda M, Campbell JS et al (2012) Acyclic retinoid targets platelet-derived growth factor signaling in the prevention of hepatic fibrosis and hepatocellular carcinoma development. Cancer Res 72:4459–4471. doi:10.1158/0008-5472.CAN-12-0028

    Article  CAS  PubMed  Google Scholar 

  • Parola M, Robino G (2001) Oxidative stress-related molecules and liver fibrosis. J Hepatol 35:297–306

    Article  CAS  PubMed  Google Scholar 

  • Pierre S, Chevallier A, Teixeira-Clerc F et al (2014) Aryl hydrocarbon receptor-dependent induction of liver fibrosis by dioxin. Toxicol Sci Off J Soc Toxicol 137:114–124. doi:10.1093/toxsci/kft236

    Article  CAS  Google Scholar 

  • Pochareddy S, Edenberg HJ (2010) Identification of a FOXA-dependent enhancer of human alcohol dehydrogenase 4 (ADH4). Gene 460:1–7. doi:10.1016/j.gene.2010.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podechard N, Le Ferrec E, Rebillard A et al (2009) NPC1 repression contributes to lipid accumulation in human macrophages exposed to environmental aryl hydrocarbons. Cardiovasc Res 82:361–370. doi:10.1093/cvr/cvp007

    Article  CAS  PubMed  Google Scholar 

  • Podevin P, Carpentier A, Pène V et al (2010) Production of infectious hepatitis C virus in primary cultures of human adult hepatocytes. Gastroenterology 139:1355–1364. doi:10.1053/j.gastro.2010.06.058

    Article  CAS  PubMed  Google Scholar 

  • Procházková J, Kabátková M, Šmerdová L et al (2013) Aryl hydrocarbon receptor negatively regulates expression of the plakoglobin gene (jup). Toxicol Sci Off J Soc Toxicol 134:258–270. doi:10.1093/toxsci/kft110

    Article  Google Scholar 

  • Ramirez MC, Bourguignon NS, Bonaventura MM et al (2012) Neonatal xenoestrogen exposure alters growth hormone-dependent liver proteins and genes in adult female rats. Toxicol Lett 213:325–331. doi:10.1016/j.toxlet.2012.07.015

    Article  CAS  PubMed  Google Scholar 

  • Rouach H, Fataccioli V, Gentil M et al (1997) Effect of chronic ethanol feeding on lipid peroxidation and protein oxidation in relation to liver pathology. Hepatol 25:351–355. doi:10.1002/hep.510250216

    Article  CAS  Google Scholar 

  • Sebastiani G, Gkouvatsos K, Maffettone C et al (2011) Accelerated CCl4-induced liver fibrosis in Hjv-/-mice, associated with an oxidative burst and precocious profibrogenic gene expression. PLoS One 6:e25138. doi:10.1371/journal.pone.0025138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sellin S, Holmquist B, Mannervik B, Vallee BL (1991) Oxidation and reduction of 4-hydroxyalkenals catalyzed by isozymes of human alcohol dehydrogenase. Biochemistry 30:2514–2518

    Article  CAS  PubMed  Google Scholar 

  • Stewart MJ, Shean ML, Paeper BW, Duester G (1991) The role of CCAAT/enhancer-binding protein in the differential transcriptional regulation of a family of human liver alcohol dehydrogenase genes. J Biol Chem 266:11594–11603

    CAS  PubMed  Google Scholar 

  • Tomkiewicz C, Herry L, Bui L-C et al (2013) The aryl hydrocarbon receptor regulates focal adhesion sites through a non-genomic FAK/Src pathway. Oncogene 32:1811–1820. doi:10.1038/onc.2012.197

    Article  CAS  PubMed  Google Scholar 

  • Triano EA, Slusher LB, Atkins TA et al (2003) Class I alcohol dehydrogenase is highly expressed in normal human mammary epithelium but not in invasive breast cancer: implications for breast carcinogenesis. Cancer Res 63:3092–3100

    CAS  PubMed  Google Scholar 

  • Wang F, Samudio I, Safe S (2001) Transcriptional activation of cathepsin D gene expression by 17beta-estradiol: mechanism of aryl hydrocarbon receptor-mediated inhibition. Mol Cell Endocrinol 172:91–103

    Article  CAS  PubMed  Google Scholar 

  • Wei R-R, Zhang M-Y, Rao H-L et al (2012) Identification of ADH4 as a novel and potential prognostic marker in hepatocellular carcinoma. Med Oncol Northwood Lond Engl 29:2737–2743. doi:10.1007/s12032-011-0126-3

    Article  CAS  Google Scholar 

  • White SS, Birnbaum LS (2009) An overview of the effects of dioxins and dioxin-like compounds on vertebrates, as documented in human and ecological epidemiology. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev 27:197–211. doi:10.1080/10590500903310047

    Article  CAS  Google Scholar 

  • Wu H, Cai P, Clemens DL et al (2006) Metabolic basis of ethanol-induced cytotoxicity in recombinant HepG2 cells: role of nonoxidative metabolism. Toxicol Appl Pharmacol 216:238–247. doi:10.1016/j.taap.2006.05.003

    Article  CAS  PubMed  Google Scholar 

  • Zelner I, Matlow JN, Natekar A, Koren G (2013) Synthesis of fatty acid ethyl esters in mammalian tissues after ethanol exposure: a systematic review of the literature. Drug Metab Rev 45:277–299. doi:10.3109/03602532.2013.795584

    Article  CAS  PubMed  Google Scholar 

  • Zheng YW, Bey M, Liu H, Felder MR (1993) Molecular basis of the alcohol dehydrogenase-negative deer mouse. Evidence for deletion of the gene for class I enzyme and identification of a possible new enzyme class. J Biol Chem 268:24933–24939

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the IREB association (Institut de Recherche scientifique sur les Boissons, 2015/03), the FRA (Fondation pour la Recherche en Alcoologie, 2016/02), the ANR (Agence Nationale de la Recherche), and the INCa (Institut National du Cancer, Caroline Duval, postdoctoral fellowship, CESA 201101), and Université Paris Descartes, MESR (Ministère de l’Enseignement Supérieur et de la Recherche) for the doctoral fellowships (Eléonore Attignon, Alix Leblanc). We thank Pr X. Coumoul for critical reading and Dr L. Aggerbeck for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne B. Blanc.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Eléonore A. Attignon and Alix F. Leblanc have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

204_2016_1700_MOESM2_ESM.eps

Supplementary material 2 a: The viability of HepaRG cells exposed for 8 days to different concentrations of TCDD was evaluated by the WST-1 test. b: Quantitative real-time PCR analysis of ADH1B and ADH4 mRNA expression after 8 days of exposure to several concentrations of TCDD. * p < 0.05, ** p < 0.01, *** p < 0.001 (EPS 13747 kb)

204_2016_1700_MOESM3_ESM.eps

Supplementary material 3 The half-lives of ADH mRNAs are unchanged after exposure of cells to TCDD. The half-lives of ADH mRNAs, as measured by quantitative real-time PCR, in the presence of DRB, an inhibitor of RNA polymerase II, are shown for HepaRG cells exposed or not (Control) to TCDD. Cells were exposed or not to 25 nM TCDD for 20 h then DRB was added and cells were harvested at 0, 4, 8, 12 and 24 h. The means are shown and the error bars represent the SD of three independent experiments (EPS 5041 kb)

204_2016_1700_MOESM4_ESM.eps

Supplementary material 4 siRNAs reduce the expression of AhR, ARNT and c-SRC mRNAs. Differentiated HepaRG cells were transfected with siRNA directed against AhR, ARNT or SRC or scrambled (siC). Three days after, the cells were exposed or not to 25 nM TCDD for 24 h. The levels of AhR (a) ARNT (b) and c-SRC (c) and CYP1A1 (d) mRNAs were measured by qRT-PCR. Relative mRNA levels were calculated using siC value as the reference. The means are shown and the error bars represent the SD of four independent experiments. ** p < 0.01 *** p < 0.001 as compared to untreated and untransfected cells (EPS 17465 kb)

Supplementary material 5 Oligonucleotide sequences of primers used for qRT-PCR (EPS 27807 kb)

204_2016_1700_MOESM6_ESM.eps

Supplementary material 6 Values (means and SD) used for Fig. 1b: qRT-PCR measurement of ADH (ADH1A, 1B, 4, 5 and 6) mRNA expression as a function of the concentration of TCDD (0–25 nM for 24 h) (n = 3-4), in differentiated HepaRG cells (EPS 3338 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attignon, E.A., Leblanc, A.F., Le-Grand, B. et al. Novel roles for AhR and ARNT in the regulation of alcohol dehydrogenases in human hepatic cells. Arch Toxicol 91, 313–324 (2017). https://doi.org/10.1007/s00204-016-1700-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1700-4

Keywords

Navigation