Skip to main content

Advertisement

Log in

The Hedgehog pathway: role in cell differentiation, polarity and proliferation

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Hedgehog (Hh) is first described as a genetic mutation that has “spiked” phenotype in the cuticles of Drosophila in later 1970s. Since then, Hh signaling has been implicated in regulation of differentiation, proliferation, tissue polarity, stem cell population and carcinogenesis. The first link of Hh signaling to cancer was established through discovery of genetic mutations of Hh receptor gene PTCH1 being responsible for Gorlin syndrome in 1996. It was later shown that Hh signaling is associated with many types of cancer, including skin, leukemia, lung, brain and gastrointestinal cancers. Another important milestone for the Hh research field is the FDA approval for the clinical use of Hh inhibitor Erivedge/Vismodegib for treatment of locally advanced and metastatic basal cell carcinomas. However, recent clinical trials of Hh signaling inhibitors in pancreatic, colon and ovarian cancer all failed, indicating a real need for further understanding of Hh signaling in cancer. In this review, we will summarize recent progress in the Hh signaling mechanism and its role in human cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aavikko M, Li SP, Saarinen S et al (2012) Loss of SUFU function in familial multiple meningioma. Am J Hum Genet 91(3):520–526. doi:10.1016/j.ajhg.2012.07.015

    CAS  PubMed Central  PubMed  Google Scholar 

  • Abbruzzese JL, National Institutes of Health (US) (2007) Are there new targets for pancreatic cancer therapeutics? National Institutes of Health, Bethesda, MD. http://videocast.nih.gov/launch.asp?13834

  • Allen BL, Tenzen T, McMahon AP (2007) The Hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development. Genes Dev 21(10):1244–1257

    CAS  PubMed Central  PubMed  Google Scholar 

  • An Y, Cai B, Chen J et al (2013) MAP3K10 promotes the proliferation and decreases the sensitivity of pancreatic cancer cells to gemcitabine by upregulating Gli-1 and Gli-2. Cancer Lett 329(2):228–235. doi:10.1016/j.canlet.2012.11.005

    CAS  PubMed  Google Scholar 

  • Aszterbaum M, Epstein J, Oro A et al (1999) Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nat Med 5(11):1285–1291

    CAS  PubMed  Google Scholar 

  • Atwood SX, Li M, Lee A, Tang JY, Oro AE (2013) GLI activation by atypical protein kinase C iota/lambda regulates the growth of basal cell carcinomas. Nature 494(7438):484–488. doi:10.1038/nature11889

    CAS  PubMed Central  PubMed  Google Scholar 

  • Avanesov A, Honeyager SM, Malicki J, Blair SS (2012) The role of glypicans in Wnt inhibitory factor-1 activity and the structural basis of Wif1’s effects on Wnt and Hedgehog signaling. PLoS Genet 8(2):e1002503. doi:10.1371/journal.pgen.1002503

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baena-Lopez LA, Rodriguez I, Baonza A (2008) The tumor suppressor genes dachsous and fat modulate different signalling pathways by regulating dally and dally-like. Proc Natl Acad Sci USA 105(28):9645–9650

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bai Q, Shen Y, Jin N, Liu H, Yao X (2014) Molecular modeling study on the dynamical structural features of human smoothened receptor and binding mechanism of antagonist LY2940680 by metadynamics simulation and free energy calculation. Biochim Biophys Acta 1840(7):2128–2138. doi:10.1016/j.bbagen.2014.03.010

    CAS  PubMed  Google Scholar 

  • Bailey JM, Swanson BJ, Hamada T et al (2008) Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res 14(19):5995–6004. doi:10.1158/1078-0432.CCR-08-0291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bailey JM, Mohr AM, Hollingsworth MA (2009) Sonic hedgehog paracrine signaling regulates metastasis and lymphangiogenesis in pancreatic cancer. Oncogene 28(40):3513–3525

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bar EE, Chaudhry A, Lin A et al (2007) Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25(10):2524–2533. doi:10.1634/stemcells.2007-0166

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barnfield PC, Zhang X, Thanabalasingham V, Yoshida M, Hui CC (2005) Negative regulation of Gli1 and Gli2 activator function by Suppressor of fused through multiple mechanisms. Differentiation 73(8):397–405

    CAS  PubMed  Google Scholar 

  • Beckett K, Franch-Marro X, Vincent JP (2008) Glypican-mediated endocytosis of hedgehog has opposite effects in flies and mice. Trends Cell Biol 18(8):360–363

    CAS  PubMed  Google Scholar 

  • Bellaiche Y, The I, Perrimon N (1998) Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 394(6688):85–88

    CAS  PubMed  Google Scholar 

  • Benazet JD, Zeller R (2009) Vertebrate limb development: moving from classical morphogen gradients to an integrated 4-dimensional patterning system. Cold Spring Harb Perspect Biol 1(4):a001339. doi:10.1101/cshperspect.a001339

    PubMed Central  PubMed  Google Scholar 

  • Bijlsma MF, Spek CA, Zivkovic D, van de Water S, Rezaee F, Peppelenbosch MP (2006) Repression of smoothened by patched-dependent (pro-)vitamin D3 secretion. PLoS Biol 4(8):e232

  • Boyd AL, Salci KR, Shapovalova Z, McIntyre BA, Bhatia M (2013) Nonhematopoietic cells represent a more rational target of in vivo hedgehog signaling affecting normal or acute myeloid leukemia progenitors. Exp Hematol. doi:10.1016/j.exphem.2013.05.287

    PubMed  Google Scholar 

  • Buglino JA, Resh MD (2008) Hhat is a palmitoylacyltransferase with specificity for N-palmitoylation of sonic hedgehog. J Biol Chem 283(32):22076–22088

    CAS  PubMed Central  PubMed  Google Scholar 

  • Callejo A, Culi J, Guerrero I (2008) Patched, the receptor of hedgehog, is a lipoprotein receptor. Proc Natl Acad Sci USA 105(3):912–917. doi:10.1073/pnas.0705603105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Canettieri G, Di Marcotullio L, Greco A et al (2010) Histone deacetylase and Cullin3-REN (KCTD11) ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation. Nat Cell Biol 12(2):132–142. doi:10.1038/ncb2013

    CAS  PubMed  Google Scholar 

  • Cao Y, Wang L, Nandy D et al (2008) Neuropilin-1 upholds dedifferentiation and propagation phenotypes of renal cell carcinoma cells by activating Akt and sonic hedgehog axes. Cancer Res 68(21):8667–8672. doi:10.1158/0008-5472.CAN-08-2614

    CAS  PubMed Central  PubMed  Google Scholar 

  • Capurro MI, Xu P, Shi W, Li F, Jia A, Filmus J (2008) Glypican-3 inhibits Hedgehog signaling during development by competing with patched for Hedgehog binding. Dev Cell 14(5):700–711. doi:10.1016/j.devcel.2008.03.006

    CAS  PubMed  Google Scholar 

  • Caspary T, Garcia-Garcia MJ, Huangfu D et al (2002) Mouse dispatched homolog1 is required for long-range, but not juxtacrine, Hh signaling. Curr Biol 12(18):1628–1632

    CAS  PubMed  Google Scholar 

  • Chang Q, Foltz WD, Chaudary N, Hill RP, Hedley DW (2013) Tumor-stroma interaction in orthotopic primary pancreatic cancer xenografts during hedgehog pathway inhibition. Int J Cancer 133(1):225–234. doi:10.1002/ijc.28006

    CAS  PubMed  Google Scholar 

  • Chaudary N, Pintilie M, Hedley D et al (2012) Hedgehog pathway signaling in cervical carcinoma and outcome after chemoradiation. Cancer 118(12):3105–3115. doi:10.1002/cncr.26635

    CAS  PubMed  Google Scholar 

  • Chen MH, Gao N, Kawakami T, Chuang PT (2005) Mice deficient in the fused homolog do not exhibit phenotypes indicative of perturbed hedgehog signaling during embryonic development. Mol Cell Biol 25(16):7042–7053

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng SY, Bishop JM (2002) Suppressor of Fused represses Gli-mediated transcription by recruiting the SAP18-mSin3 corepressor complex. Proc Natl Acad Sci USA 99(8):5442–5447

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheung HO, Zhang X, Ribeiro A et al (2009) The kinesin protein Kif7 is a critical regulator of Gli transcription factors in mammalian hedgehog signaling. Sci Signal 2(76):ra29. doi:10.1126/scisignal.2000405

    PubMed  Google Scholar 

  • Chuang PT, McMahon AP (1999) Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 397(6720):617–621

    CAS  PubMed  Google Scholar 

  • Clark VE, Erson-Omay EZ, Serin A et al (2013) Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 339(6123):1077–1080. doi:10.1126/science.1233009

    CAS  PubMed  Google Scholar 

  • Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17(2):165–172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coni S, Antonucci L, D’Amico D et al (2013) Gli2 acetylation at lysine 757 regulates hedgehog-dependent transcriptional output by preventing its promoter occupancy. PLoS One 8(6):e65718. doi:10.1371/journal.pone.0065718

    CAS  PubMed Central  PubMed  Google Scholar 

  • Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF (2005) Vertebrate smoothened functions at the primary cilium. Nature 437(7061):1018–1021

    CAS  PubMed  Google Scholar 

  • Couve-Privat S, Bouadjar B, Avril MF, Sarasin A, Daya-Grosjean L (2002) Significantly high levels of ultraviolet-specific mutations in the smoothened gene in basal cell carcinomas from DNA repair-deficient xeroderma pigmentosum patients. Cancer Res 62(24):7186–7189

    CAS  PubMed  Google Scholar 

  • Dahmane N, Ruiz i Altaba A (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126(14):3089–3100

    PubMed  Google Scholar 

  • Das S, Samant RS, Shevde LA (2013) Nonclassical activation of Hedgehog signaling enhances multidrug resistance and makes cancer cells refractory to smoothened-targeting Hedgehog inhibition. J Biol Chem 288(17):11824–11833. doi:10.1074/jbc.M112.432302

    CAS  PubMed Central  PubMed  Google Scholar 

  • Di Marcotullio L, Ferretti E, Greco A et al (2006) Numb is a suppressor of Hedgehog signalling and targets Gli1 for Itch-dependent ubiquitination. Nat Cell Biol 8(12):1415–1423

    PubMed  Google Scholar 

  • Dierker T, Dreier R, Petersen A, Bordych C, Grobe K (2009) Heparan sulfate-modulated, metalloprotease-mediated sonic hedgehog release from producing cells. J Biol Chem 284(12):8013–8022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dierks C, Beigi R, Guo GR et al (2008) Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 14(3):238–249. doi:10.1016/j.ccr.2008.08.003

    CAS  PubMed  Google Scholar 

  • Domingo-Domenech J, Vidal SJ, Rodriguez-Bravo V et al (2012) Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell 22(3):373–388. doi:10.1016/j.ccr.2012.07.016

    CAS  PubMed  Google Scholar 

  • Douglas AE, Heim JA, Shen F et al (2011) The alpha subunit of the G protein G13 regulates activity of one or more Gli transcription factors independently of smoothened. J Biol Chem 286(35):30714–30722. doi:10.1074/jbc.M111.219279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duarte JM, Biyani N, Baskaran K, Capitani G (2013) An analysis of oligomerization interfaces in transmembrane proteins. BMC Struct Biol 13:21. doi:10.1186/1472-6807-13-21

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eberl M, Klingler S, Mangelberger D et al (2012) Hedgehog-EGFR cooperation response genes determine the oncogenic phenotype of basal cell carcinoma and tumour-initiating pancreatic cancer cells. EMBO Mol Med 4(3):218–233. doi:10.1002/emmm.201100201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eggenschwiler JT, Espinoza E, Anderson KV (2001) Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Nature 412(6843):194–198

    CAS  PubMed  Google Scholar 

  • Endoh-Yamagami S, Evangelista M, Wilson D et al (2009) The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development. Curr Biol 19(15):1320–1326. doi:10.1016/j.cub.2009.06.046

    CAS  PubMed  Google Scholar 

  • Epstein E Jr (2001) Genetic determinants of basal cell carcinoma risk. Med Pediatr Oncol 36(5):555–558

    PubMed  Google Scholar 

  • Fan Q, He M, Sheng T et al (2010) Requirement of TGF{beta} Signaling for SMO-mediated Carcinogenesis. J Biol Chem 285(47):36570–36576. doi:10.1074/jbc.C110.164442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fei DL, Sanchez-Mejias A, Wang Z et al (2012) Hedgehog signaling regulates bladder cancer growth and tumorigenicity. Cancer Res 72(17):4449–4458. doi:10.1158/0008-5472.CAN-11-4123

    CAS  PubMed  Google Scholar 

  • Feldmann G, Dhara S, Fendrich V et al (2007) Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 67(5):2187–2196

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feldmann G, Fendrich V, McGovern K et al (2008) An orally bioavailable small-molecule inhibitor of Hedgehog signaling inhibits tumor initiation and metastasis in pancreatic cancer. Mol Cancer Ther 7(9):2725–2735. doi:10.1158/1535-7163.MCT-08-0573

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandez LA, Squatrito M, Northcott P et al (2012) Oncogenic YAP promotes radioresistance and genomic instability in medulloblastoma through IGF2-mediated Akt activation. Oncogene 31(15):1923–1937. doi:10.1038/onc.2011.379

    Google Scholar 

  • Gao J, Graves S, Koch U et al (2009) Hedgehog signaling is dispensable for adult hematopoietic stem cell function. Cell Stem Cell 4(6):548–558. doi:10.1016/j.stem.2009.03.015

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Gonzalo FR, Corbit KC, Sirerol-Piquer MS et al (2011) A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat Genet 43(8):776–784. doi:10.1038/ng.891

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goodrich LV, Milenkovic L, Higgins KM, Scott MP (1997) Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277(5329):1109–1113

    CAS  PubMed  Google Scholar 

  • Gorlin RJ (1987) Nevoid basal-cell carcinoma syndrome. Medicine 66(2):98–113

    CAS  PubMed  Google Scholar 

  • Gu D, Fan Q, Zhang X, Xie J (2012) A role for transcription factor STAT3 signaling in oncogene smoothened-driven carcinogenesis. J Biol Chem 287(45):38356–38366. doi:10.1074/jbc.M112.377382

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gu D, Liu H, Su GH et al (2013) Combining hedgehog signaling inhibition with focal irradiation on reduction of pancreatic cancer metastasis. Mol Cancer Ther 12(6):1038–1048. doi:10.1158/1535-7163.MCT-12-1030

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hahn H, Wicking C, Zaphiropoulous PG et al (1996) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85(6):841–851

    CAS  PubMed  Google Scholar 

  • Hahn H, Wojnowski L, Zimmer AM, Hall J, Miller G, Zimmer A (1998) Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nat Med 4(5):619–622

    CAS  PubMed  Google Scholar 

  • Han L, Pan Y, Wang B (2012) Small ubiquitin-like modifier (SUMO) modification inhibits GLI2 protein transcriptional activity in vitro and in vivo. J Biol Chem 287(24):20483–20489. doi:10.1074/jbc.M112.359299

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hatley ME, Tang W, Garcia MR et al (2012) A mouse model of rhabdomyosarcoma originating from the adipocyte lineage. Cancer Cell 22(4):536–546. doi:10.1016/j.ccr.2012.09.004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heller E, Hurchla MA, Xiang J et al (2012) Hedgehog signaling inhibition blocks growth of resistant tumors through effects on tumor microenvironment. Cancer Res 72(4):897–907. doi:10.1158/0008-5472.CAN-11-2681

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hillman RT, Feng BY, Ni J et al (2011) Neuropilins are positive regulators of Hedgehog signal transduction. Genes Dev 25(22):2333–2346. doi:10.1101/gad.173054.111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hofmann I, Stover EH, Cullen DE et al (2009) Hedgehog signaling is dispensable for adult murine hematopoietic stem cell function and hematopoiesis. Cell Stem Cell 4(6):559–567. doi:10.1016/j.stem.2009.03.016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoover AN, Wynkoop A, Zeng H, Jia J, Niswander LA, Liu A (2008) C2cd3 is required for cilia formation and Hedgehog signaling in mouse. Development 135(24):4049–4058

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hsieh A, Ellsworth R, Hsieh D (2011) Hedgehog/GLI1 regulates IGF dependent malignant behaviors in glioma stem cells. J Cell Physiol 226(4):1118–1127. doi:10.1002/jcp.22433

    CAS  PubMed  Google Scholar 

  • Hsu SH, Zhang X, Yu C et al (2011) Kif7 promotes hedgehog signaling in growth plate chondrocytes by restricting the inhibitory function of Sufu. Development 138(17):3791–3801. doi:10.1242/dev.069492

    CAS  PubMed  Google Scholar 

  • Hsu YC, Li L, Fuchs E (2014) Transit-amplifying cells orchestrate stem cell activity and tissue regeneration. Cell 157(4):935–949. doi:10.1016/j.cell.2014.02.057

    CAS  PubMed  Google Scholar 

  • Huang S, Yang L, An Y et al (2010) Expression of hedgehog signaling molecules in lung cancer. Acta Histochem. doi:10.1016/j.acthis.2010.06.003

    Google Scholar 

  • Huang S, Zhang Z, Zhang C et al (2013) Activation of Smurf E3 ligase promoted by smoothened regulates hedgehog signaling through targeting patched turnover. PLoS Biol 11(11):e1001721. doi:10.1371/journal.pbio.1001721

    PubMed Central  PubMed  Google Scholar 

  • Huangfu D, Anderson KV (2005) Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci USA 102(32):11325–11330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV (2003) Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426(6962):83–87

    CAS  PubMed  Google Scholar 

  • Hui CC, Angers S (2011) Gli proteins in development and disease. Annu Rev Cell Dev Biol 27:513–537. doi:10.1146/annurev-cellbio-092910-154048

    CAS  PubMed  Google Scholar 

  • Huntzicker EG, Estay IS, Zhen H, Lokteva LA, Jackson PK, Oro AE (2006) Dual degradation signals control Gli protein stability and tumor formation. Genes Dev 20(3):276–281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huppke P, Wegener E, Bohrer-Rabel H et al (2014) Tectonic gene mutations in patients with Joubert syndrome. EJHG, Eur J Hum Genet. doi:10.1038/ejhg.2014.160

    Google Scholar 

  • Ignatius MS, Chen E, Elpek NM et al (2012) In vivo imaging of tumor-propagating cells, regional tumor heterogeneity, and dynamic cell movements in embryonal rhabdomyosarcoma. Cancer Cell 21(5):680–693. doi:10.1016/j.ccr.2012.03.043

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inaguma S, Kasai K, Ikeda H (2010) GLI1 facilitates the migration and invasion of pancreatic cancer cells through MUC5AC-mediated attenuation of E-cadherin. Oncogene. doi:10.1038/onc.2010.459

    PubMed  Google Scholar 

  • Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15(23):3059–3087. doi:10.1101/gad.938601

    CAS  PubMed  Google Scholar 

  • Ingham PW, Placzek M (2006) Orchestrating ontogenesis: variations on a theme by sonic hedgehog. Nat Rev Genet 7(11):841–850

    CAS  PubMed  Google Scholar 

  • Jagani Z, Mora-Blanco EL, Sansam CG et al (2010) Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog–Gli pathway. Nat Med 16(12):1429–1433. doi:10.1038/nm.2251

    CAS  PubMed  Google Scholar 

  • Javelaud D, Pierrat MJ, Mauviel A (2012) Crosstalk between TGF-beta and hedgehog signaling in cancer. FEBS Lett 586(14):2016–2025. doi:10.1016/j.febslet.2012.05.011

    CAS  PubMed  Google Scholar 

  • Jiang J (2006) Regulation of Hh/Gli signaling by dual ubiquitin pathways. Cell Cycle 5(21):2457–2463

    Google Scholar 

  • Johnson RL, Riddle RD, Tabin CJ (1994) Mechanisms of limb patterning. Curr Opin Genet Dev 4(4):535–542

    CAS  PubMed  Google Scholar 

  • Johnson RL, Rothman AL, Xie J et al (1996) Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272(5268):1668–1671

    CAS  PubMed  Google Scholar 

  • Johnson RW, Nguyen MP, Padalecki SS et al (2011) TGF-beta promotion of Gli2-induced expression of parathyroid hormone-related protein, an important osteolytic factor in bone metastasis, is independent of canonical Hedgehog signaling. Cancer Res 71(3):822–831. doi:10.1158/0008-5472.CAN-10-2993

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joost S, Almada LL, Rohnalter V et al (2012) GLI1 inhibition promotes epithelial-to-mesenchymal transition in pancreatic cancer cells. Cancer Res 72(1):88–99. doi:10.1158/0008-5472.CAN-10-4621

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kawakami T, Kawcak T, Li YJ, Zhang W, Hu Y, Chuang PT (2002) Mouse dispatched mutants fail to distribute hedgehog proteins and are defective in hedgehog signaling. Development 129(24):5753–5765

    CAS  PubMed  Google Scholar 

  • Keysar SB, Le PN, Anderson RT et al (2013) Hedgehog signaling alters reliance on EGF receptor signaling and mediates anti-EGFR therapeutic resistance in head and neck cancer. Cancer Res 73(11):3381–3392. doi:10.1158/0008-5472.CAN-12-4047

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khaliullina H, Panakova D, Eugster C, Riedel F, Carvalho M, Eaton S (2009) Patched regulates smoothened trafficking using lipoprotein-derived lipids. Development 136(24):4111–4121. doi:10.1242/dev.041392

    CAS  PubMed  Google Scholar 

  • Kijima C, Miyashita T, Suzuki M, Oka H, Fujii K (2012) Two cases of nevoid basal cell carcinoma syndrome associated with meningioma caused by a PTCH1 or SUFU germline mutation. Fam Cancer 11(4):565–570. doi:10.1007/s10689-012-9548-0

    PubMed  Google Scholar 

  • Kinzler KW, Vogelstein B (1990) The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Mol Cell Biol 10(2):634–642

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kinzler KW, Ruppert JM, Bigner SH, Vogelstein B (1988) The GLI gene is a member of the Kruppel family of zinc finger proteins. Nature 332(6162):371–374

    CAS  PubMed  Google Scholar 

  • Kogerman P, Grimm T, Kogerman L et al (1999) Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol 1(5):312–319

    CAS  PubMed  Google Scholar 

  • Koziel L, Kunath M, Kelly OG, Vortkamp A (2004) Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Dev Cell 6(6):801–813

    CAS  PubMed  Google Scholar 

  • Lam CW, Xie J, To KF et al (1999) A frequent activated smoothened mutation in sporadic basal cell carcinomas. Oncogene 18(3):833–836

    CAS  PubMed  Google Scholar 

  • Law KK, Makino S, Mo R, Zhang X, Puviindran V, Hui CC (2012) Antagonistic and cooperative actions of Kif7 and Sufu define graded intracellular Gli activities in Hedgehog signaling. PLoS One 7(11):e50193. doi:10.1371/journal.pone.0050193

    PubMed Central  PubMed  Google Scholar 

  • Lee JJ, Ekker SC, von Kessler DP, Porter JA, Sun BI, Beachy PA (1994) Autoproteolysis in hedgehog protein biogenesis. Science 266(5190):1528–1537

    CAS  PubMed  Google Scholar 

  • Li C, Heidt DG, Dalerba P et al (2007a) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037. doi:10.1158/0008-5472.CAN-06-2030

    CAS  PubMed  Google Scholar 

  • Li X, Deng W, Lobo-Ruppert SM, Ruppert JM (2007b) Gli1 acts through Snail and E-cadherin to promote nuclear signaling by beta-catenin. Oncogene 26(31):4489–4498. doi:10.1038/sj.onc.1210241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li C, Chi S, Xie J (2011a) Hedgehog signaling in skin cancers. Cell Signal. doi:10.1016/j.cellsig.2011.03.002

    Google Scholar 

  • Li F, Shi W, Capurro M, Filmus J (2011b) Glypican-5 stimulates rhabdomyosarcoma cell proliferation by activating Hedgehog signaling. J Cell Biol 192(4):691–704. doi:10.1083/jcb.201008087

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li S, Chen Y, Shi Q, Yue T, Wang B, Jiang J (2012a) Hedgehog-regulated ubiquitination controls smoothened trafficking and cell surface expression in Drosophila. PLoS Biol 10(1):e1001239. doi:10.1371/journal.pbio.1001239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li ZJ, Nieuwenhuis E, Nien W et al (2012b) Kif7 regulates Gli2 through Sufu-dependent and -independent functions during skin development and tumorigenesis. Development 139(22):4152–4161. doi:10.1242/dev.081190

    CAS  PubMed  Google Scholar 

  • Li ZJ, Mack SC, Mak TH, Angers S, Taylor MD, Hui CC (2013) Evasion of p53 and G/M checkpoints are characteristic of Hh-driven basal cell carcinoma. Oncogene. doi:10.1038/onc.2013.212

    Google Scholar 

  • Lin SH, George TJ, Ben-Josef E et al (2013) Opportunities and challenges in the era of molecularly targeted agents and radiation therapy. J Natl Cancer Inst 105(10):686–693. doi:10.1093/jnci/djt055

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin C, Yao E, Wang K et al (2014) Regulation of Sufu activity by p66beta and Mycbp provides new insight into vertebrate Hedgehog signaling. Genes Dev 28(22):2547–2563. doi:10.1101/gad.249425.114

    PubMed  Google Scholar 

  • Liu S, Dontu G, Mantle ID et al (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66(12):6063–6071

    CAS  PubMed  Google Scholar 

  • Long J, Li B, Rodriguez-Blanco J et al (2014) The BET bromodomain inhibitor I-BET151 acts downstream of Smoothened to abrogate the growth of Hedgehog driven cancers. J Biol Chem. doi:10.1074/jbc.M114.595348

    Google Scholar 

  • Lum L, Yao S, Mozer B et al (2003) Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299(5615):2039–2045. doi:10.1126/science.1081403299/5615/2039

    CAS  PubMed  Google Scholar 

  • Ma Y, Erkner A, Gong R et al (2002) Hedgehog-mediated patterning of the mammalian embryo requires transporter-like function of dispatched. Cell 111(1):63–75

    CAS  PubMed  Google Scholar 

  • Mainwaring LA, Kenney AM (2011) Divergent functions for eIF4E and S6 kinase by sonic hedgehog mitogenic signaling in the developing cerebellum. Oncogene 30(15):1784–1797. doi:10.1038/onc.2010.564

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mao J, Ligon KL, Rakhlin EY et al (2006) A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res 66(20):10171–10178

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinelli DC, Fan CM (2007) Gas1 extends the range of Hedgehog action by facilitating its signaling. Genes Dev 21(10):1231–1243

    CAS  PubMed Central  PubMed  Google Scholar 

  • May SR, Ashique AM, Karlen M et al (2005) Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev Biol 287(2):378–389

    CAS  PubMed  Google Scholar 

  • McMahon AP, Ingham PW, Tabin CJ (2003) Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol 53:1–114

    CAS  PubMed  Google Scholar 

  • Merchant M, Evangelista M, Luoh SM et al (2005) Loss of the serine/threonine kinase fused results in postnatal growth defects and lethality due to progressive hydrocephalus. Mol Cell Biol 25(16):7054–7068

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merchant A, Joseph G, Wang Q, Brennan S, Matsui W (2010) Gli1 regulates the proliferation and differentiation of HSCs and myeloid progenitors. Blood 115(12):2391–2396. doi:10.1182/blood-2009-09-241703

    CAS  PubMed Central  PubMed  Google Scholar 

  • Molnar C, Holguin H, Mayor F Jr, Ruiz-Gomez A, de Celis JF (2007) The G protein-coupled receptor regulatory kinase GPRK2 participates in Hedgehog signaling in Drosophila. Proc Natl Acad Sci USA 104(19):7963–7968

    CAS  PubMed Central  PubMed  Google Scholar 

  • Myers BR, Sever N, Chong YC et al (2013) Hedgehog pathway modulation by multiple lipid binding sites on the smoothened effector of signal response. Dev Cell 26(4):346–357. doi:10.1016/j.devcel.2013.07.015

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nachtergaele S, Whalen DM, Mydock LK et al (2013) Structure and function of the smoothened extracellular domain in vertebrate hedgehog signaling. eLife 2:e01340. doi:10.7554/eLife.01340

    PubMed Central  PubMed  Google Scholar 

  • Nedelcu D, Liu J, Xu Y, Jao C, Salic A (2013) Oxysterol binding to the extracellular domain of Smoothened in Hedgehog signaling. Nat Chem Biol 9(9):557–564. doi:10.1038/nchembio.1290

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nitzki F, Zibat A, Frommhold A et al (2011) Uncommitted precursor cells might contribute to increased incidence of embryonal rhabdomyosarcoma in heterozygous Patched1-mutant mice. Oncogene 30(43):4428–4436. doi:10.1038/onc.2011.157

    CAS  PubMed  Google Scholar 

  • Ogden SK, Fei DL, Schilling NS, Ahmed YF, Hwa J, Robbins DJ (2008) G protein Galphai functions immediately downstream of Smoothened in Hedgehog signalling. Nature 456(7224):967–970. doi:10.1038/nature07459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okada A, Charron F, Morin S et al (2006) Boc is a receptor for sonic hedgehog in the guidance of commissural axons. Nature 444(7117):369–373

    CAS  PubMed  Google Scholar 

  • Olive KP, Jacobetz MA, Davidson CJ et al (2009) Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324(5933):1457–1461. doi:10.1126/science.1171362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ozdemir BC, Pentcheva-Hoang T, Carstens JL et al (2014) Depletion of carcinoma-associated fibroblasts and fibrosis induces immune suppression and accelerates pancreatic cancer with reduced survival. Cancer Cell 25(6):719–734

    CAS  PubMed  Google Scholar 

  • Palm W, Swierczynska MM, Kumari V, Ehrhart-Bornstein M, Bornstein SR, Eaton S (2013) Secretion and signaling activities of lipoprotein-associated hedgehog and non-sterol-modified hedgehog in flies and mammals. PLoS Biol 11(3):e1001505. doi:10.1371/journal.pbio.1001505

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pan Y, Bai CB, Joyner AL, Wang B (2006) Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol Cell Biol 26(9):3365–3377

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park KS, Martelotto LG, Peifer M et al (2011) A crucial requirement for Hedgehog signaling in small cell lung cancer. Nat Med 17(11):1504–1508. doi:10.1038/nm.2473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parker DS, White MA, Ramos AI, Cohen BA, Barolo S (2011) The cis-regulatory logic of Hedgehog gradient responses: key roles for gli binding affinity, competition, and cooperativity. Science Signal 4(176):ra38. doi:10.1126/scisignal.2002077

    Google Scholar 

  • Parra LM, Zou Y (2010) Sonic hedgehog induces response of commissural axons to semaphorin repulsion during midline crossing. Nat Neurosci 13(1):29–35. doi:10.1038/nn.2457

    CAS  PubMed  Google Scholar 

  • Pelczar P, Zibat A, van Dop WA et al (2013) Inactivation of Patched1 in mice leads to development of gastrointestinal stromal-like tumors that express Pdgfralpha but not kit. Gastroenterology 144(1):134–144 e6. doi:10.1053/j.gastro.2012.09.061

  • Philipp M, Fralish GB, Meloni AR et al (2008) Smoothened signaling in vertebrates is facilitated by a G protein-coupled receptor kinase. Mol Biol Cell 19(12):5478–5489

    CAS  PubMed Central  PubMed  Google Scholar 

  • Porter JA, von Kessler DP, Ekker SC et al (1995) The product of hedgehog autoproteolytic cleavage active in local and long-range signalling. Nature 374(6520):363–366

    CAS  PubMed  Google Scholar 

  • Porter JA, Young KE, Beachy PA (1996) Cholesterol modification of hedgehog signaling proteins in animal development. Science 274(5285):255–259

    CAS  PubMed  Google Scholar 

  • Pressey JG, Anderson JR, Crossman DK, Lynch JC, Barr FG (2011) Hedgehog pathway activity in pediatric embryonal rhabdomyosarcoma and undifferentiated sarcoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer 57(6):930–938. doi:10.1002/pbc.23174

    PubMed Central  PubMed  Google Scholar 

  • Putoux A, Thomas S, Coene KL et al (2011) KIF7 mutations cause fetal hydrolethalus and acrocallosal syndromes. Nat Genet 43(6):601–606. doi:10.1038/ng.826

    CAS  PubMed Central  PubMed  Google Scholar 

  • Putoux A, Nampoothiri S, Laurent N et al (2012) Novel KIF7 mutations extend the phenotypic spectrum of acrocallosal syndrome. J Med Genet 49(11):713–720. doi:10.1136/jmedgenet-2012-101016

    CAS  PubMed  Google Scholar 

  • Queiroz KC, Ruela-de-Sousa RR, Fuhler GM et al (2010) Hedgehog signaling maintains chemoresistance in myeloid leukemic cells. Oncogene 29(48):6314–6322. doi:10.1038/onc.2010.375

    CAS  PubMed  Google Scholar 

  • Ramaswamy B, Lu Y, Teng KY et al (2012) Hedgehog signaling is a novel therapeutic target in tamoxifen-resistant breast cancer aberrantly activated by PI3K/AKT pathway. Cancer Res 72(19):5048–5059. doi:10.1158/0008-5472.CAN-12-1248

    CAS  PubMed  Google Scholar 

  • Rana R, Carroll CE, Lee HJ et al (2013) Structural insights into the role of the smoothened cysteine-rich domain in Hedgehog signalling. Nature communications 4:2965. doi:10.1038/ncomms3965

    PubMed Central  PubMed  Google Scholar 

  • Read TA, Fogarty MP, Markant SL et al (2009) Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell 15(2):135–147. doi:10.1016/j.ccr.2008.12.016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reifenberger J, Wolter M, Weber RG et al (1998) Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 58(9):1798–1803

    CAS  PubMed  Google Scholar 

  • Reifenberger J, Wolter M, Knobbe CB et al (2005) Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br J Dermatol 152(1):43–51

    CAS  PubMed  Google Scholar 

  • Reiter JF, Skarnes WC (2006) Tectonic, a novel regulator of the Hedgehog pathway required for both activation and inhibition. Genes Dev 20(1):22–27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111. doi:10.1038/35102167

    CAS  PubMed  Google Scholar 

  • Rhim AD, Oberstein PE, Thomas DH et al (2014) Stromal elements act to restrain, rather than support pancreatic ductual adenocarcinoma. Cancer Cell 25(6):735–747. doi:10.1016/j.ccr.2014.04.021

    CAS  PubMed  Google Scholar 

  • Ribes V, Briscoe J (2009) Establishing and interpreting graded Sonic Hedgehog signaling during vertebrate neural tube patterning: the role of negative feedback. Cold Spring Harb Perspect Biol 1(2):a002014. doi:10.1101/cshperspect.a002014

    PubMed Central  PubMed  Google Scholar 

  • Riobo NA, Saucy B, Dilizio C, Manning DR (2006) Activation of heterotrimeric G proteins by Smoothened. Proc Natl Acad Sci USA 103(33):12607–12612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez-Blanco J, Schilling NS, Tokhunts R et al (2013) The hedgehog processing pathway is required for NSCLC growth and survival. Oncogene 32(18):2335–2345. doi:10.1038/onc.2012.243

    CAS  PubMed  Google Scholar 

  • Romer JT, Kimura H, Magdaleno S et al (2004) Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/−)p53(−/−) mice. Cancer Cell 6(3):229–240. doi:10.1016/j.ccr.2004.08.019

    CAS  PubMed  Google Scholar 

  • Ruppert JM, Kinzler KW, Wong AJ et al (1988) The GLI-Kruppel family of human genes. Mol Cell Biol 8(8):3104–3113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez-Hernandez D, Sierra J, Ortigao-Farias JR, Guerrero I (2012) The WIF domain of the human and Drosophila Wif-1 secreted factors confers specificity for Wnt or Hedgehog. Development 139(20):3849–3858. doi:10.1242/dev.080028

    CAS  PubMed  Google Scholar 

  • Sasaki H, Hui C, Nakafuku M, Kondoh H (1997) A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 124(7):1313–1322

    CAS  PubMed  Google Scholar 

  • Seppala M, Depew MJ, Martinelli DC, Fan CM, Sharpe PT, Cobourne MT (2007) Gas1 is a modifier for holoprosencephaly and genetically interacts with sonic hedgehog. J Clin Invest 117(6):1575–1584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shaheen R, Faqeih E, Seidahmed MZ et al (2011) A TCTN2 mutation defines a novel Meckel Gruber syndrome locus. Hum Mutat 32(6):573–578. doi:10.1002/humu.21507

    CAS  PubMed  Google Scholar 

  • Sheng T, Chi S, Zhang X, Xie J (2006) Regulation of Gli1 localization by the cAMP/protein kinase A signaling axis through a site near the nuclear localization signal. J Biol Chem 281(1):9–12

    CAS  PubMed  Google Scholar 

  • Shi S, Deng YZ, Zhao JS et al (2012) RACK1 promotes non-small-cell lung cancer tumorigenicity through activating sonic hedgehog signaling pathway. J Biol Chem 287(11):7845–7858. doi:10.1074/jbc.M111.315416

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shin K, Lee J, Guo N et al (2011) Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 472(7341):110–114. doi:10.1038/nature09851

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shin K, Lim A, Zhao C et al (2014) Hedgehog signaling restrains bladder cancer progression by eliciting stromal production of urothelial differentiation factors. Cancer Cell 26(4):521–533

    CAS  PubMed  Google Scholar 

  • Siggins SL, Nguyen NY, McCormack MP et al (2009) The Hedgehog receptor Patched1 regulates myeloid and lymphoid progenitors by distinct cell-extrinsic mechanisms. Blood 114(5):995–1004. doi:10.1182/blood-2009-03-208330

    CAS  PubMed  Google Scholar 

  • Sims-Mourtada J, Izzo JG, Apisarnthanarax S et al (2006) Hedgehog: an attribute to tumor regrowth after chemoradiotherapy and a target to improve radiation response. Clin Cancer Res 12(21):6565–6572. doi:10.1158/1078-0432.CCR-06-0176

    CAS  PubMed  Google Scholar 

  • Singh RR, Kunkalla K, Qu C et al (2011) ABCG2 is a direct transcriptional target of hedgehog signaling and involved in stroma-induced drug tolerance in diffuse large B-cell lymphoma. Oncogene 30(49):4874–4886. doi:10.1038/onc.2011.195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Snuderl M, Batista A, Kirkpatrick ND et al (2013) Targeting placental growth factor/neuropilin 1 pathway inhibits growth and spread of medulloblastoma. Cell 152(5):1065–1076. doi:10.1016/j.cell.2013.01.036

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song Z, Yue W, Wei B et al (2011) Sonic hedgehog pathway is essential for maintenance of cancer stem-like cells in human gastric cancer. PLoS One 6(3):e17687. doi:10.1371/journal.pone.0017687

    CAS  PubMed Central  PubMed  Google Scholar 

  • Speksnijder L, Cohen-Overbeek TE, Knapen MF et al (2013) A de novo GLI3 mutation in a patient with acrocallosal syndrome. American J Med Genet Part A 161A(6):1394–1400. doi:10.1002/ajmg.a.35874

    Google Scholar 

  • Stecca B, Mas C, Clement V et al (2007) Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci USA 104(14):5895–5900

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steg AD, Bevis KS, Katre AA et al (2012a) Stem cell pathways contribute to clinical chemoresistance in ovarian cancer. Clin Cancer Res 18(3):869–881. doi:10.1158/1078-0432.CCR-11-2188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steg AD, Katre AA, Bevis KS et al (2012b) Smoothened antagonists reverse taxane resistance in ovarian cancer. Mol Cancer Ther 11(7):1587–1597. doi:10.1158/1535-7163.MCT-11-1058

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stone DM, Hynes M, Armanini M et al (1996) The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384(6605):129–134

    CAS  PubMed  Google Scholar 

  • Su W, Meng F, Huang L, Zheng M, Liu W, Sun H (2012) Sonic hedgehog maintains survival and growth of chronic myeloid leukemia progenitor cells through beta-catenin signaling. Exp Hematol 40(5):418–427. doi:10.1016/j.exphem.2012.01.003

    CAS  PubMed  Google Scholar 

  • Suzuki T (2013) How is digit identity determined during limb development? Dev Growth Differ 55(1):130–138. doi:10.1111/dgd.12022

    PubMed  Google Scholar 

  • Taipale J, Beachy PA (2001) The Hedgehog and Wnt signalling pathways in cancer. Nature 411(6835):349–354

    CAS  PubMed  Google Scholar 

  • Taipale J, Cooper MK, Maiti T, Beachy PA (2002) Patched acts catalytically to suppress the activity of Smoothened. Nature 418(6900):892–897. doi:10.1038/nature00989nature00989

    CAS  PubMed  Google Scholar 

  • Takahashi T, Kawakami K, Mishima S et al (2011) Cyclopamine induces eosinophilic differentiation and upregulates CD44 expression in myeloid leukemia cells. Leuk Res 35(5):638–645. doi:10.1016/j.leukres.2010.09.022

    CAS  PubMed  Google Scholar 

  • Takebe N, Harris PJ, Warren RQ, Ivy SP (2011) Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 8(2):97–106. doi:10.1038/nrclinonc.2010.196

    CAS  PubMed  Google Scholar 

  • Tanaka H, Nakamura M, Kameda C et al (2009) The Hedgehog signaling pathway plays an essential role in maintaining the CD44+CD24−/low subpopulation and the side population of breast cancer cells. Anticancer Res 29(6):2147–2157

    CAS  PubMed  Google Scholar 

  • Tang SN, Fu J, Nall D, Rodova M, Shankar S, Srivastava RK (2012) Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int J Cancer 131(1):30–40. doi:10.1002/ijc.26323

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tang Y, Gholamin S, Schubert S et al (2014) Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nat Med 20(7):732–740. doi:10.1038/nm.3613

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tenzen T, Allen BL, Cole F, Kang JS, Krauss RS, McMahon AP (2006) The cell surface membrane proteins Cdo and Boc are components and targets of the Hedgehog signaling pathway and feedback network in mice. Dev Cell 10(5):647–656

    CAS  PubMed  Google Scholar 

  • Tian H, Callahan CA, DuPree KJ et al (2009) Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc Natl Acad Sci USA 106(11):4254–4259. doi:10.1073/pnas.0813203106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tostar U, Malm CJ, Meis-Kindblom JM, Kindblom LG, Toftgard R, Unden AB (2006) Deregulation of the hedgehog signalling pathway: a possible role for the PTCH and SUFU genes in human rhabdomyoma and rhabdomyosarcoma development. J Pathol 208(1):17–25. doi:10.1002/path.1882

    CAS  PubMed  Google Scholar 

  • Toyoda H, Kinoshita-Toyoda A, Fox B, Selleck SB (2000) Structural analysis of glycosaminoglycans in animals bearing mutations in sugarless, sulfateless, and tout-velu. Drosophila homologues of vertebrate genes encoding glycosaminoglycan biosynthetic enzymes. J Biol Chem 275(29):21856–21861

    CAS  PubMed  Google Scholar 

  • Visbal AP, LaMarca HL, Villanueva H et al (2011) Altered differentiation and paracrine stimulation of mammary epithelial cell proliferation by conditionally activated smoothened. Dev Biol 352(1):116–127. doi:10.1016/j.ydbio.2011.01.025

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wallace VA (1999) Purkinje-cell-derived sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol 9(8):445–448

    CAS  PubMed  Google Scholar 

  • Walsh DM, Shalev SA, Simpson MA et al (2013) Acrocallosal syndrome: identification of a novel KIF7 mutation and evidence for oligogenic inheritance. Eur J Med Genet 56(1):39–42. doi:10.1016/j.ejmg.2012.10.004

    PubMed  Google Scholar 

  • Wang B, Li Y (2006) Evidence for the direct involvement of {beta}TrCP in Gli3 protein processing. Proc Natl Acad Sci USA 103(1):33–38

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang C, Pan Y, Wang B (2010a) Suppressor of fused and Spop regulate the stability, processing and function of Gli2 and Gli3 full-length activators but not their repressors. Development 137(12):2001–2009. doi:10.1242/dev.052126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang DH, Clemons NJ, Miyashita T et al (2010b) Aberrant epithelial-mesenchymal Hedgehog signaling characterizes Barrett’s metaplasia. Gastroenterology 138(5):1810–1822. doi:10.1053/j.gastro.2010.01.048

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Davidow L, Arvanites AC et al (2012a) Glucocorticoid compounds modify smoothened localization and hedgehog pathway activity. Chem Biol 19(8):972–982. doi:10.1016/j.chembiol.2012.06.012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Ding Q, Yen CJ et al (2012b) The crosstalk of mTOR/S6K1 and Hedgehog pathways. Cancer Cell 21(3):374–387. doi:10.1016/j.ccr.2011.12.028

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang C, Wu H, Katritch V et al (2013) Structure of the human smoothened receptor bound to an antitumour agent. Nature 497(7449):338–343. doi:10.1038/nature12167

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22(1):103–114

    CAS  PubMed  Google Scholar 

  • Weierstall U, James D, Wang C et al (2014) Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat Commun 5:3309. doi:10.1038/ncomms4309

    PubMed Central  PubMed  Google Scholar 

  • Wilson CW, Nguyen CT, Chen MH et al (2009) Fused has evolved divergent roles in vertebrate Hedgehog signalling and motile ciliogenesis. Nature 459(7243):98–102. doi:10.1038/nature07883

    CAS  PubMed Central  PubMed  Google Scholar 

  • Witt RM, Hecht ML, Pazyra-Murphy MF et al (2013) Heparan sulfate proteoglycans containing a glypican 5 core and 2-O-sulfo-iduronic acid function as sonic hedgehog co-receptors to promote proliferation. J Biol Chem. doi:10.1074/jbc.M112.438937

    PubMed Central  PubMed  Google Scholar 

  • Xia R, Jia H, Fan J, Jiu Y, Jia J (2012) USP8 promotes smoothened signaling by preventing its ubiquitination and changing its subcellular localization. PLoS Biol 10(1):e1001238. doi:10.1371/journal.pbio.1001238

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xie J, Murone M, Luoh SM et al (1998) Activating smoothened mutations in sporadic basal-cell carcinoma. Nature 391(6662):90–92

    CAS  PubMed  Google Scholar 

  • Xie J, Aszterbaum M, Zhang X et al (2001) A role of PDGFRalpha in basal cell carcinoma proliferation. Proc Natl Acad Sci USA 98(16):9255–9259

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang L, Xie G, Fan Q, Xie J (2010) Activation of the hedgehog-signaling pathway in human cancer and the clinical implications. Oncogene 29(4):469–481. doi:10.1038/onc.2009.392

    PubMed  Google Scholar 

  • Yang L, Wang LS, Chen XL et al (2012) Hedgehog signaling activation in the development of squamous cell carcinoma and adenocarcinoma of esophagus. Int J Biochem Mol Biol 3(1):46–57

    PubMed Central  PubMed  Google Scholar 

  • Yao S, Lum L, Beachy P (2006) The ihog cell-surface proteins bind Hedgehog and mediate pathway activation. Cell 125(2):343–357

    CAS  PubMed  Google Scholar 

  • Yavari A, Nagaraj R, Owusu-Ansah E et al (2010) Role of lipid metabolism in smoothened derepression in hedgehog signaling. Dev Cell 19(1):54–65. doi:10.1016/j.devcel.2010.06.007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshikawa R, Nakano Y, Tao L et al (2008) Hedgehog signal activation in oesophageal cancer patients undergoing neoadjuvant chemoradiotherapy. Br J Cancer 98(10):1670–1674. doi:10.1038/sj.bjc.6604361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yue S, Tang LY, Tang Y et al (2014) Requirement of Smurf-mediated endocytosis of Patched1 in sonic hedgehog signal reception. eLife 3. doi:10.7554/eLife.02555

  • Zahreddine HA, Culjkovic-Kraljacic B, Assouline S et al (2014) The sonic hedgehog factor GLI1 imparts drug resistance through inducible glucuronidation. Nature 511(7507):90–93. doi:10.1038/nature13283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Q, Davenport JR, Croyle MJ, Haycraft CJ, Yoder BK (2005) Disruption of IFT results in both exocrine and endocrine abnormalities in the pancreas of Tg737(orpk) mutant mice. Lab Invest 85(1):45–64

    CAS  PubMed  Google Scholar 

  • Zhang W, Kang JS, Cole F, Yi MJ, Krauss RS (2006) Cdo functions at multiple points in the Sonic Hedgehog pathway, and Cdo-deficient mice accurately model human holoprosencephaly. Dev Cell 10(5):657–665

    CAS  PubMed  Google Scholar 

  • Zhang Q, Shi Q, Chen Y et al (2009) Multiple Ser/Thr-rich degrons mediate the degradation of Ci/Gli by the Cul3-HIB/SPOP E3 ubiquitin ligase. Proc Natl Acad Sci USA 106(50):21191–21196. doi:10.1073/pnas.0912008106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Y, Tong C, Jiang J (2007) Hedgehog regulates smoothened activity by inducing a conformational switch. Nature 450(7167):252–258

    CAS  PubMed  Google Scholar 

  • Zhao C, Chen A, Jamieson CH et al (2009) Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458(7239):776–779

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Current research in my laboratory is supported by grants from the National Cancer Institute CA155086, Riley Children’s Foundation and Wells Center for Pediatric Research. Due to space limit, we could not include many important findings in this review but want to take this opportunity to thank all the investigators in this field for their works.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwu Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Wang, Y. & Xie, J. The Hedgehog pathway: role in cell differentiation, polarity and proliferation. Arch Toxicol 89, 179–191 (2015). https://doi.org/10.1007/s00204-014-1433-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1433-1

Keywords

Navigation