Skip to main content

Advertisement

Log in

Toxicological interactions between the mycotoxins deoxynivalenol, nivalenol and their acetylated derivatives in intestinal epithelial cells

  • In vitro systems
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

In case of mycotoxin contaminations, food and feedstuff are usually contaminated by more than one toxin. However toxicological data concerning the effects of mycotoxin combinations are sparse. The intestinal epithelium is the first barrier against food contaminants and this constantly renewing organ is particularly sensitive to mycotoxins. The aim of this study was to investigate the effects of deoxynivalenol (DON) and four other type B trichothecenes (TCTB), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), nivalenol (NIV) and fusarenon-X (FX) alone or in combination on intestinal epithelial cells. Proliferating, non-transformed IPEC-1 cells were exposed to increasing doses of TCTB, alone or in binary mixtures and mycotoxin-induced cytotoxicity was measured with MTT test. The toxicological interactions were assessed using the isobologram-Combination index method. The five tested mycotoxins and their mixtures had a dose-dependent effect on the proliferating enterocytes. DON–NIV, DON–15-ADON and 15-ADON–3-ADON combinations were synergistic, with magnitude of synergy for 10 % cytotoxicity ranging from 2 to 7. The association between DON and 3-ADON also demonstrated a synergy but only at high doses, at lower doses antagonism was noted. Additivity was observed between NIV and FX, and antagonism between DON and FX. These results indicate that the simultaneous presence of mycotoxins in food commodities and diet may be more toxic than predicted from the mycotoxins alone. This synergy should be taken into account considering the frequent co-occurrence of TCTB in the diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

3-ADON:

3-Acetyldeoxynivalenol

15-ADON:

15-Acetyldeoxynivalenol

CI:

Combination index

DON:

Deoxynivalenol

D m :

Median effect dose

DRI:

Dose reduction index

f a :

Fraction affected

FX:

Fusarenon-X

IC50 :

Inhibitory concentration 50 %

MTT:

3,(4,5-Dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide

NIV:

Nivalenol

References

  • Alassane-Kpembi I, Kolf-Clauw M, Gauthier T, Abrami R, Abiola FA, Oswald IP, Puel O (2013) New insights into mycotoxin mixtures: the toxicity of low doses of Type B trichothecenes on intestinal epithelial cells is synergistic. Toxicol Appl Pharmacol 272:191–198

    Article  CAS  PubMed  Google Scholar 

  • Almond GW (1996) Research applications using pigs. Vet Clin North Am Food Anim Pract 12:707–716

    CAS  PubMed  Google Scholar 

  • Arunachalam C, Doohan FM (2013) Trichothecene toxicity in eukaryotes: cellular and molecular mechanisms in plants and animals. Toxicol Lett 217:149–158

    Article  CAS  PubMed  Google Scholar 

  • Bianco G, Fontanella B, Severino L, Quaroni A, Autore G, Marzocco S (2012) Nivalenol and deoxynivalenol affect rat intestinal epithelial cells: a concentration related study. PLoS One 7:e52051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boedeker W, Backhaus T (2010) The scientific assessment of combined effects of risk factors: different approaches in experimental biosciences and epidemiology. Eur J Epidemiol 25:539–546

    Article  PubMed  Google Scholar 

  • Bony S, Olivier-Loiseau L, Carcelen M, Devaux A (2007) Genotoxic potential associated with low levels of the Fusarium mycotoxins nivalenol and fusarenon X in a human intestinal cell line. Toxicol In Vitro 21:457–465

    Article  CAS  PubMed  Google Scholar 

  • Brosnahan AJ, Brown DR (2012) Porcine IPEC-J2 intestinal epithelial cells in microbiological investigations. Vet Microbiol 156:229–237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681

    Article  CAS  PubMed  Google Scholar 

  • Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70:440–446

    Article  CAS  PubMed  Google Scholar 

  • Danicke S, Hegewald AK, Kahlert S, Kluess J, Rothkötter HJ, Breves G, Doll S (2010) Studies on the toxicity of deoxynivalenol (DON), sodium metabisulfite, DON-sulfonate (DONS) and de-epoxy-DON for porcine peripheral blood mononuclear cells and the Intestinal Porcine Epithelial Cell lines IPEC-1 and IPEC-J2, and on effects of DON and DONS on piglets. Food Chem Toxicol 48:2154–2162

    Article  CAS  PubMed  Google Scholar 

  • De Boevre M, Jacxsens L, Lachat C, Eeckhout M, Di Mavungu JD, Audenaert K, Maene P, Haesaert G, Kolsteren P, De Meulenaer B, De Saeger S (2013) Human exposure to mycotoxins and their masked forms through cereal-based foods in Belgium. Toxicol Lett 218:281–292

    Article  PubMed  Google Scholar 

  • De Vos M, Huygelen V, Casteleyn C, Van Cruchten S, Van Ginneken C (2012) Alternative models to study the intestinal barrier function of piglets. Altern Lab Anim 40:P26–P27

    PubMed  Google Scholar 

  • Desjardins AE (2009) From yellow rain to green wheat: 25 years of trichothecene biosynthesis research. J Agric Food Chem 57:4478–4484

    Article  CAS  PubMed  Google Scholar 

  • Desjardins AE, McCormick SP, Appell M (2007) Structure-activity relationships of trichothecene toxins in an Arabidopsis thaliana leaf assay. J Agric Food Chem 55:6487–6492

    Article  CAS  PubMed  Google Scholar 

  • Diesing AK, Nossol C, Panther P, Walk N, Post A, Kluess J, Kreutzmann P, Dänicke S, Rothkötter HJ, Kahlert S (2011) Mycotoxin deoxynivalenol (DON) mediates biphasic cellular response in intestinal porcine epithelial cell lines IPEC-1 and IPEC-J2. Toxicol Lett 200:8–18

    Article  CAS  PubMed  Google Scholar 

  • Eckard S, Wettstein FE, Forrer HR, Vogelgsang S (2011) Incidence of Fusarium species and mycotoxins in silage maize. Toxins 3:949–967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ficheux AS, Sibiril Y, Parent-Massin D (2012) Co-exposure of Fusarium mycotoxins: in vitro myelotoxicity assessment on human hematopoietic progenitors. Toxicon 60:1171–1179

    Article  CAS  PubMed  Google Scholar 

  • Gauthier T, Wang X, Dos Santos JS, Fysikopoulos A, Tadrist S, Canlet C, Artigot MP, Loiseau N, Oswald IP, Puel O (2012) Trypacidin, a spore borne toxin from Aspergillus fumigatus, induces cytotoxicity in lung cells. PLoS One 7:e29906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez-Vallina R, Wang H, Zhan R, Berschneider HM, Lee RM, Davidson NO, Black DD (1996) Lipoprotein and apolipoprotein secretion by a newborn piglet intestinal cell line (IPEC-1). Am J Physiol 271:249–259

    Google Scholar 

  • Goossens J, Pasmans F, Verbrugghe E, Vandenbroucke V, De Baere S, Meyer E, Haesebrouck F, De Backer P, Croubels S (2012) Porcine intestinal epithelial barrier disruption by the Fusarium mycotoxins deoxynivalenol and T-2 toxin promotes transepithelial passage of doxycycline and paromomycin. BMC Vet Res 8:245

    Article  PubMed Central  PubMed  Google Scholar 

  • Heath JP (1996) Epithelial cell migration in the intestine. Cell Biol Int 20:139–146

    Article  CAS  PubMed  Google Scholar 

  • Hedman R, Pettersson H, Lindberg JE (1997) Absorption and metabolism of nivalenol in pigs. Arch Tierernahr 50:13–24

    Article  CAS  PubMed  Google Scholar 

  • Ireland JJ, Roberts RM, Palmer GH, Bauman DE, Bazer FW (2008) A commentary on domestic animals as dual-purpose models that benefit agricultural and biomedical research. J Anim Sci 86:2797–2805

    Article  CAS  PubMed  Google Scholar 

  • Koh SY, George S, Brozel V, Moxley R, Francis D, Kaushik RS (2008) Porcine intestinal epithelial cell lines as a new in vitro model for studying adherence and pathogenesis of enterotoxigenic Escherichia coli. Vet Microbiol 130:191–197

    Article  CAS  PubMed  Google Scholar 

  • Kouadio JH, Dano SD, Moukha S, Mobio TA, Creppy EE (2007) Effects of combinations of Fusarium mycotoxins on the inhibition of macromolecular synthesis, malondialdehyde levels, DNA methylation and fragmentation, and viability in Caco-2 cells. Toxicon 49:306–317

    Article  CAS  PubMed  Google Scholar 

  • Larsen JC, Hunt J, Perrin I, Ruckenbauer P (2004) Workshop on trichothecenes with a focus on DON: summary report. Toxicol Lett 153:1–22

    Article  CAS  PubMed  Google Scholar 

  • Loiseau N, Debrauwer L, Sambou T, Bouhet S, Miller JD, Martin PG, Viadere JL, Pinton P, Puel O, Pineau T, Tulliez J, Galtier P, Oswald IP (2007) Fumonisin B1 exposure and its selective effect on porcine jejunal segment: sphingolipids, glycolipids and trans-epithelial passage disturbance. Biochem Pharmacol 74:144–152

    Article  CAS  PubMed  Google Scholar 

  • Lucioli J, Pinton P, Callu P, Laffitte J, Grosjean F, Kolf-Clauw M, Oswald IP, Bracarense AP (2013) The food contaminant deoxynivalenol activates the mitogen activated protein kinases in the intestine: interest of ex vivo models as an alternative to in vivo experiments. Toxicon 66:31–36

    Article  CAS  PubMed  Google Scholar 

  • Madhyastha MS, Marquardt RR, Abramson D (1994) Structure-activity relationships and interactions among trichothecene mycotoxins as assessed by yeast bioassay. Toxicon 32:1147–1152

    Article  CAS  PubMed  Google Scholar 

  • Maresca M (2013) From the gut to the brain: journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol. Toxins 5:784–820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maresca M, Yahi N, Younes-Sakr L, Boyron M, Caporiccio B, Fantini J (2008) Both direct and indirect effects account for the pro-inflammatory activity of enteropathogenic mycotoxins on the human intestinal epithelium: stimulation of interleukin-8 secretion, potentiation of interleukin-1beta effect and increase in the transepithelial passage of commensal bacteria. Toxicol Appl Pharmacol 228:84–92

    Article  CAS  PubMed  Google Scholar 

  • Marzocco S, Russo R, Bianco G, Autore G, Severino L (2009) Pro-apoptotic effects of nivalenol and deoxynivalenol trichothecenes in J774A.1 murine macrophages. Toxicol Lett 189:21–26

    Article  CAS  PubMed  Google Scholar 

  • McCormick SP, Alexander NJ, Proctor RH (2013) Trichothecene triangle: toxins, genes, and plant disease. In: Gang DR (ed) Phytochemicals, plant growth, and the environment. Springer, New York, pp 1–17

    Chapter  Google Scholar 

  • Meissonnier GM, Laffitte J, Loiseau N, Benoit E, Raymond I, Pinton P, Cossalter AM, Bertin G, Oswald IP, Galtier P (2007) Selective impairment of drug-metabolizing enzymes in pig liver during subchronic dietary exposure to Aflatoxin B1. Food Chem Toxicol 45:2145–2154

    Article  CAS  PubMed  Google Scholar 

  • Parent-Massin D (2004) Haematotoxicity of trichothecenes. Toxicol Lett 153:75–81

    Article  CAS  PubMed  Google Scholar 

  • Pestka JJ, Zhou HR, Moon Y, Chung YJ (2004) Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicol Lett 153:61–73

    Article  CAS  PubMed  Google Scholar 

  • Pestka JJ, Yike I, Dearborn DG, Ward MD, Harkema JR (2008) Stachybotrys chartarum, trichothecene mycotoxins, and damp building-related illness: new insights into a public health enigma. Toxicol Sci 104:4–26

    Article  CAS  PubMed  Google Scholar 

  • Pinton P, Braicu C, Nougayrede JP, Laffitte J, Taranu I, Oswald IP (2010) Deoxynivalenol impairs porcine intestinal barrier function and decreases the protein expression of claudin-4 through a mitogen-activated protein kinase-dependent mechanism. J Nutr 140:1956–1962

    Article  CAS  PubMed  Google Scholar 

  • Pinton P, Tsybulskyy D, Lucioli J, Laffitte J, Callu P, Lyazhri F, Grosjean F, Bracarense AP, Kolf-Clauw M, Oswald IP (2012) Toxicity of deoxynivalenol and its acetylated derivatives on the intestine: differential effects on morphology, barrier function, tight junction proteins, and mitogen-activated protein kinases. Toxicol Sci 130:180–190

    Article  CAS  PubMed  Google Scholar 

  • Poapolathep A, Sugita-Konishi Y, Doi K, Kumagai S (2003) The fates of trichothecene mycotoxins, nivalenol and fusarenon-X, in mice. Toxicon 41:1047–1054

    Article  CAS  PubMed  Google Scholar 

  • Poapolathep A, Sugita-Konishi Y, Phitsanu T, Doi K, Kumagai S (2004) Placental and milk transmission of trichothecene mycotoxins, nivalenol and fusarenon-X, in mice. Toxicon 44:111–113

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro DH, Ferreira FL, da Silva VN, Aquino S, Correa B (2010) Effects of aflatoxin B1 and fumonisin B1 on the viability and induction of apoptosis in rat primary hepatocytes. Int J Mol Sci 11:1944–1955

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schinkel AH, Jonker JW (2003) Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 55:3–29

    Article  CAS  PubMed  Google Scholar 

  • Schollenberger M, Muller HM, Ernst K, Sondermann S, Liebscher M, Schlecker C, Wischer G, Drochner W, Hartung K, Piepho HP (2012) Occurrence and distribution of 13 trichothecene toxins in naturally contaminated maize plants in Germany. Toxins 4:778–787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • SCOOP (2003) Collection of occurrence data of Fusarium toxins in food and assessment of dietary intake by the population of EU member states Reports on tasks for scientific cooperation SCOOP Task 3210. p 606. http://ec.europa.eu/food/fs/scoop/task3210.pdf

  • Speijers GJ, Speijers MH (2004) Combined toxic effects of mycotoxins. Toxicol Lett 153:91–98

    Article  CAS  PubMed  Google Scholar 

  • Streit E, Schatzmayr G, Tassis P, Tzika E, Marin D, Taranu I, Tabuc C, Nicolau A, Aprodu I, Puel O, Oswald IP (2012) Current situation of mycotoxin contamination and co-occurrence in animal feed-focus on Europe. Toxins 4:788–809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Streit E, Schwab C, Sulyok M, Naehrer K, Krska R, Schatzmayr G (2013) Multi-mycotoxin screening reveals the occurrence of 139 different secondary metabolites in feed and feed ingredients. Toxins 5:504–523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sundstol Eriksen G, Pettersson H, Lundh T (2004) Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites. Food Chem Toxicol 42:619–624

    Article  CAS  PubMed  Google Scholar 

  • Tep J, Videmann B, Mazallon M, Balleydier S, Cavret S, Lecoeur S (2007) Transepithelial transport of fusariotoxin nivalenol: mediation of secretion by ABC transporters. Toxicol Lett 170:248–258

    Article  CAS  PubMed  Google Scholar 

  • Thompson WL, Wannemacher RW Jr (1986) Structure-function relationships of 12,13-epoxytrichothecene mycotoxins in cell culture: comparison to whole animal lethality. Toxicon 24:985–994

    Article  CAS  PubMed  Google Scholar 

  • Van Der Fels-Klerx HJ, Klemsdal S, Hietaniemi V, Lindblad M, Ioannou-Kakouri E, Van Asselt ED (2012) Mycotoxin contamination of cereal grain commodities in relation to climate in North West Europe. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 29:1581–1592

    Article  Google Scholar 

  • Vandenbroucke V, Croubels S, Martel A, Verbrugghe E, Goossens J, Van Deun K, Boyen F, Thompson A, Shearer N, De Backer P, Haesebrouck F, Pasmans F (2011) The mycotoxin deoxynivalenol potentiates intestinal inflammation by Salmonella typhimurium in porcine ileal loops. PLoS One 6:e23871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Videmann B, Tep J, Cavret S, Lecoeur S (2007) Epithelial transport of deoxynivalenol: involvement of human P-glycoprotein (ABCB1) and multidrug resistance-associated protein 2 (ABCC2). Food Chem Toxicol 45:1938–1947

    Article  CAS  PubMed  Google Scholar 

  • Wan LY, Turner PC, El-Nezami H (2013) Individual and combined cytotoxic effects of Fusarium toxins (deoxynivalenol, nivalenol, zearalenone and fumonisins B1) on swine jejunal epithelial cells. Food Chem Toxicol 57:276–283

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Pr. T.C. Chou, Memorial Sloan-Kettering Cancer Center, New York City for kind help in data analysis, and Pr F. A. Abiola, Institut des Sciences Biomédicales Appliquées, Cotonou (Republic of Benin) for fruitful discussion. The authors thank Dr. Woodley for language editing. This work was supported by the ANR-CESA project DON & Co. I.A.K. was supported by a doctoral fellowship from the Government of the Republic of Benin.

Conflict of interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle P. Oswald.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alassane-Kpembi, I., Puel, O. & Oswald, I.P. Toxicological interactions between the mycotoxins deoxynivalenol, nivalenol and their acetylated derivatives in intestinal epithelial cells. Arch Toxicol 89, 1337–1346 (2015). https://doi.org/10.1007/s00204-014-1309-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1309-4

Keywords

Navigation