Skip to main content

Advertisement

Log in

Superparamagnetic iron oxide nanoparticles exacerbate the risks of reactive oxygen species-mediated external stresses

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Superparamagnetic iron oxide nanoparticles (IONPs) have been widely applied in numerous biomedical fields. The evaluation of the toxicity of IONPs to the environment and human beings is indispensable to guide their applications. IONPs are usually considered to have good biocompatibility; however, some literatures have reported the toxicity of IONPs in vitro and in vivo. The controversy surrounding the biocompatibility of IONPs prompted us to carefully consider the biological effects of IONPs, especially under stress conditions. However, the potential risks of IONPs under stress conditions have not yet been evaluated in depth. Acrolein is widespread in the environment and modulates stress-induced gene activation and cell death in many organs and tissues. In this study, we assessed the sensitivity of H9c2 cardiomyocyte cells embedded with IONPs to acrolein and investigated the possible molecular mechanisms involved in this sensitivity. IONPs, which alone exhibited no toxicity, sensitized the H9c2 cardiomyocytes to acrolein-induced dysfunction. The IONP/acrolein treatment induced a loss of viability, membrane disruption, reactive oxygen species (ROS) generation, Erk activation, mitochondrial and lysosomal dysfunction, and necrosis in H9c2 cells. Treatment with an ROS generation inhibitor (diphenyleneiodonium) or an iron chelator (deferoxamine) prevented the IONP/acrolein-induced loss of viability, suggesting that ROS and IONP degradation facilitated the toxicity of the IONP/acrolein treatment in H9c2 cells. Our data suggest that cells embedded in IONPs are more vulnerable to oxidative stress, which confirms the hypothesis that nanoparticles can sensitize cells to the adverse effects of external stimulation. The present work provides a new perspective from which to evaluate the interactions between nanoparticles and cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

Abbreviations

AO:

Acridine orange

ATP:

Adenosine 5′-triphosphate

BCA:

Bicinchoninic acid assay

BSA:

Bovine serum albumin

DHE:

Dihydroethidium

DLS:

Dynamic light scattering

DMEM:

Dulbecco’s modified eagle medium

DNPH:

2,4-Dinitrophenylhydrazine

DPI:

Diphenyleneiodonium

EGF:

Epidermal growth factor

Erk:

Extracellular signal-regulated kinase

ESCs:

Embryonic stem cells

FBS:

Fetal bovine serum

GSH:

Glutathione reduced

HCM:

Human cardiac myocytes

IONPs:

Superparamagnetic iron oxide nanoparticles

JC-1:

CBIC2(3), 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetra ethylbenzimidazolylcarbocyanine iodide

JNK:

c-Jun N-terminal kinase

LAMP1:

Lysosome-associated membrane protein 1

LDH:

Lactate dehydrogenase

MDC:

Monodansylcadaverine

MTT:

3-(4,5)-Dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide

MRI:

Magnetic resonance imaging

NDA:

2,3-Naphthalenedicarboxaldehyde

NOX:

Nicotinamide adenine dinucleotide phosphate oxidase

PBS:

Phosphate-buffered saline

PI:

Propidium iodide

RIP:

Receptor-interacting protein

ROS:

Reactive oxygen species

tBHP:

Tert-butyl hydroperoxide

TEM:

Transmission electron microscope

References

  • Anderson EJ, Katunga LA, Willis MS (2012) Mitochondria as a source and target of lipid peroxidation products in healthy and diseased heart. Clin Exp Pharmacol Physiol 39(2):179–193

    Article  CAS  PubMed  Google Scholar 

  • Andreas K, Georgieva R, Ladwig M, Mueller S, Notter M, Sittinger M, Ringe J (2012) Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking. Biomaterials 33(18):4515–4525

    Article  CAS  PubMed  Google Scholar 

  • Ansari MA, Keller JN, Scheff SW (2008) Protective effect of pycnogenol in human neuroblastoma SH-SY5Y cells following acrolein-induced cytotoxicity. Free Radic Biol Med 45(11):1510–1519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Au KW, Liao SY, Lee YK, Lai WH, Ng KM, Chan YC, Yip MC, Ho CY, Wu EX, Li RA, Siu CW, Tse HF (2009) Effects of iron oxide nanoparticles on cardiac differentiation of embryonic stem cells. Biochem Biophys Res Commun 379(4):898–903

    Article  CAS  PubMed  Google Scholar 

  • Bajaj A, Samanta B, Yan H, Jerry DJ, Rotello VM (2009) Stability, toxicity and differential cellular uptake of protein passivated-Fe3O4 nanoparticles. J Mater Chem 19(35):6328–6331

    Article  CAS  Google Scholar 

  • Bein K, Leikauf GD (2011) Acrolein—a pulmonary hazard. Mol Nutr Food Res 55(9):1342–1360

    Article  CAS  PubMed  Google Scholar 

  • Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27(50):6434–6451

    Article  CAS  PubMed  Google Scholar 

  • Chen YC, Hsiao JK, Liu HM, Lai IY, Yao M, Hsu SC, Ko BS, Yang CS, Huang DM (2010) The inhibitory effect of superparamagnetic iron oxide nanoparticle (Ferucarbotran) on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells. Toxicol Appl Pharmacol 245(2):272–279

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Yin JJ, Zhou YT, Zhang Y, Song L, Song M, Hu S, Gu N (2012) Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6(5):4001–4012

    Article  CAS  PubMed  Google Scholar 

  • Colombo M, Carregal-Romero S, Casula MF, Gutierrez L, Morales MP, Bohm IB, Heverhagen JT, Prosperi D, Parak WJ (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41(11):4306–4334

    Article  CAS  PubMed  Google Scholar 

  • Comfort KK, Maurer EI, Braydich-Stolle LK, Hussain SM (2011) Interference of silver, gold, and iron oxide nanoparticles on epidermal growth factor signal transduction in epithelial cells. ACS Nano 5(12):10000–10008

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Hu W, Hu Y, Tang MS (2006) Acrolein is a major cigarette-related lung cancer agent: preferential binding at p53 mutational hotspots and inhibition of DNA repair. Proc Natl Acad Sci U S A 103(42):15404–15409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang G, Chen H, Dong Y, Luo X, Yu H, Moore Z, Bey EA, Boothman DA, Gao J (2013) Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics 3(2):116–126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kehrer JP (2000) The Haber–Weiss reaction and mechanisms of toxicity. Toxicology 149(1):43–50

    Article  CAS  PubMed  Google Scholar 

  • Khan MI, Mohammad A, Patil G, Naqvi SA, Chauhan LK, Ahmad I (2012) Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials 33(5):1477–1488

    Article  CAS  PubMed  Google Scholar 

  • Kung G, Konstantinidis K, Kitsis RN (2011) Programmed necrosis, not apoptosis, in the heart. Circ Res 108(8):1017–1036

    Article  CAS  PubMed  Google Scholar 

  • Kurz T, Gustafsson B, Brunk UT (2006) Intralysosomal iron chelation protects against oxidative stress-induced cellular damage. FEBS J 273(13):3106–3117

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Hung HW, Hung PH, Shieh YS (2010) Epidermal growth factor receptor regulates beta-catenin location, stability, and transcriptional activity in oral cancer. Mol Cancer 9:64

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levy M, Lagarde F, Maraloiu VA, Blanchin MG, Gendron F, Wilhelm C, Gazeau F (2010) Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Nanotechnology 21(39):395103

    Article  PubMed  Google Scholar 

  • Li Q, Tang G, Xue S, He X, Miao P, Li Y, Wang J, Xiong L, Wang Y, Zhang C, Yang G-Y (2013) Silica-coated superparamagnetic iron oxide nanoparticles targeting of EPCs in ischemic brain injury. Biomaterials 34(21):4982–4992

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Gao J, Ai H, Chen X (2013) Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 9(9–10):1533–1545

    Article  CAS  PubMed  Google Scholar 

  • Lunov O, Syrovets T, Buchele B, Jiang X, Rocker C, Tron K, Nienhaus GU, Walther P, Mailander V, Landfester K, Simmet T (2010) The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials 31(19):5063–5071

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Li Y, Wang H, Cui Y, Feng Z, Li H, Li Y, Wang Y, Wurtz K, Weber P, Long J, Liu J (2013a) Hydroxytyrosol promotes superoxide production and defects in autophagy leading to anti-proliferation and apoptosis on human prostate cancer cells. Curr Cancer Drug Targets 13(6):625–639

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Li Y, Wang H, Feng Z, Long J, Liu J (2013b) Mitochondrial accumulation under oxidative stress is due to defects in autophagy. J Cell Biochem 114(1):212–219

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Wang H, Chen X, Cui Y, Li H, Long J, Mo X, Liu J (2013c) Protection of H9c2 rat cardiomyoblasts against oxidative insults by total paeony glucosides from radix paeoniae rubrae. Phytomedicine 21(1):20–24

    Article  CAS  PubMed  Google Scholar 

  • Maghzal GJ, Krause KH, Stocker R, Jaquet V (2012) Detection of reactive oxygen species derived from the family of NOX NADPH oxidases. Free Radic Biol Med 53(10):1903–1918

    Article  CAS  PubMed  Google Scholar 

  • Mahmoudi M, Laurent S, Shokrgozar MA, Hosseinkhani M (2011) Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS Nano 5(9):7263–7276

    Article  CAS  PubMed  Google Scholar 

  • Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2012) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112(4):2323–2338

    Article  CAS  PubMed  Google Scholar 

  • Mohammad MK, Avila D, Zhang J, Barve S, Arteel G, McClain C, Joshi-Barve S (2012) Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress. Toxicol Appl Pharmacol 265(1):73–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park EJ, Kim H, Kim Y, Yi J, Choi K, Park K (2010) Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice. Toxicology 275(1–3):65–71

    Article  CAS  PubMed  Google Scholar 

  • Ramesh V, Ravichandran P, Copeland CL, Gopikrishnan R, Biradar S, Goornavar V, Ramesh GT, Hall JC (2012) Magnetite induces oxidative stress and apoptosis in lung epithelial cells. Mol Cell Biochem 363(1–2):225–234

    Article  CAS  PubMed  Google Scholar 

  • Rauch J, Kolch W, Laurent S, Mahmoudi M (2013) Big signals from small particles: regulation of cell signaling pathways by nanoparticles. Chem Rev 113(5):3391–3406

    Article  CAS  PubMed  Google Scholar 

  • Saito S, Tsugeno M, Koto D, Mori Y, Yoshioka Y, Nohara S, Murase K (2012) Impact of surface coating and particle size on the uptake of small and ultrasmall superparamagnetic iron oxide nanoparticles by macrophages. Int J Nanomedicine 7:5415–5421

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shi R, Rickett T, Sun W (2011) Acrolein-mediated injury in nervous system trauma and diseases. Mol Nutr Food Res 55(9):1320–1331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh N, Jenkins GJ, Asadi R, Doak SH (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 1. doi:10.3402/nano.v1i0.5358, http://www.nano-reviews.net/index.php/nano/article/view/5358/6032

  • Singh N, Jenkins GJ, Nelson BC, Marquis BJ, Maffeis TG, Brown AP, Williams PM, Wright CJ, Doak SH (2012) The role of iron redox state in the genotoxicity of ultrafine superparamagnetic iron oxide nanoparticles. Biomaterials 33(1):163–170

    Article  CAS  PubMed  Google Scholar 

  • Soenen SJ, Himmelreich U, Nuytten N, Pisanic TR 2nd, Ferrari A, De Cuyper M (2010) Intracellular nanoparticle coating stability determines nanoparticle diagnostics efficacy and cell functionality. Small 6(19):2136–2145

    Article  CAS  PubMed  Google Scholar 

  • Soenen SJ, Himmelreich U, Nuytten N, De Cuyper M (2011) Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling. Biomaterials 32(1):195–205

    Article  CAS  PubMed  Google Scholar 

  • Stevens JF, Maier CS (2008) Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease. Mol Nutr Food Res 52(1):7–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stroh A, Zimmer C, Gutzeit C, Jakstadt M, Marschinke F, Jung T, Pilgrimm H, Grune T (2004) Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Radic Biol Med 36(8):976–984

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam S, Unsicker K (2006) Extracellular signal-regulated kinase as an inducer of non-apoptotic neuronal death. Neuroscience 138(4):1055–1065

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Yathindranath V, Worden M, Thliveris JA, Chu S, Parkinson FE, Hegmann T, Miller DW (2013) Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models. Int J Nanomedicine 8:961–970

    Article  PubMed Central  PubMed  Google Scholar 

  • Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, Kim K, Jon S (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed 47(29):5362–5365

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the National Natural Science Foundation of China, Key Program 30930105, Foundation of Xi’an Jiaotong University, New Century Excellent Talents in University, the National Natural Science Foundation of China (Grant No. 31070740), and the 985 and 211 Projects of Xi’an Jiaotong University.

Conflict of interest

The authors confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiankang Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 844 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, C., Li, Y., Yang, L. et al. Superparamagnetic iron oxide nanoparticles exacerbate the risks of reactive oxygen species-mediated external stresses. Arch Toxicol 89, 357–369 (2015). https://doi.org/10.1007/s00204-014-1267-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1267-x

Keywords

Navigation