Skip to main content
Log in

Construction of a Promoter-probe Vector for Bacillus thuringiensis: the Identification of cis-acting Elements of the chiA Locus

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The expression and application of Bacillus thuringiensis (Bt) chitinase genes have been extensively investigated. However, little information is available regarding the regulation of chitinase gene expression in Bt. In this study, a shuttle promoter-probe vector was constructed incorporating the thermostable β-galactosidase gene bgaB of B. stearothermophilus as the reporter for the study of Bt promoters. Using this plasmid, the activity of the chiA gene promoter in Bt was investigated. Deletion analysis of the putative chiA promoter region revealed that the sequence located ~75 bp DNA from positions −116 to −42, with respect to the translation start site, is the core promoter of chiA gene. Furthermore, a site for chitin induction was identified near position −36. This site for negative regulation was indicated downstream of the RNA polymerase binding sites of the promoter of chiA. The expression of chiA started in cell grown for about 6 h and reached the maximum after 60 h of incubation. Induction of chiA expression by chitin was demonstrated by an increase in β-galactosidase activity of ~2.5-fold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arantes O, Lereclus D (1991) Construction of cloning vectors for Bacillus thuringiensis. Gene 108(1):115–119

    Article  PubMed  CAS  Google Scholar 

  2. Barboza-Corona JE, Nieto-Mazzocco E, Veldazquez-Robledo R, Salcedo-Hernandez R, Bautista M, Jimenez B, Ibarra JE (2003) Cloning, sequencing, and expression of the chitinase gene chiA74 from Bacillus thuringiensis. Appl Environ Microb 69(2):1023–1029

    Article  CAS  Google Scholar 

  3. Barboza-Corona JE, Ortiz-Rodriguez T, de la Fuente-Salcido N, Bideshi DK, Ibarra JE, Salcedo-Hernandez R (2009) Hyperproduction of chitinase influences crystal toxin synthesis and sporulation of Bacillus thuringiensis. Antonie Van Leeuwenhoek 96(1):31–42

    Article  PubMed  CAS  Google Scholar 

  4. Barboza-Corona JE, Reyes-Rios DM, Salcedo-Hernandez R, Bideshi DK (2008) Molecular and biochemical characterization of an endochitinase (ChiA-HD73) from Bacillus thuringiensis subsp kurstaki HD-73. Mol Biotechnol 39(1):29–37

    Article  PubMed  CAS  Google Scholar 

  5. Bertram R, Rigali S, Wood N, Lulko AT, Kuipers OP, Titgemeyer F (2011) Regulon of the N-acetylglucosamine utilization regulator NagR in Bacillus subtilis. J Bacteriol 193(14):3525–3536

    Article  PubMed  CAS  Google Scholar 

  6. Chen W, Chen H, Xia Y, Zhao J, Tian F, Zhang H (2008) Production, purification, and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus. J Dairy Sci 91(5):1751–1758

    Article  PubMed  CAS  Google Scholar 

  7. Chen YL, Lu W, Chen YH, Xiao L, Cai J (2007) Cloning, expression and sequence analysis of chiA, chiB in Bacillus thuringiensis subsp. colmeri 15A3. Wei Sheng Wu Xue Bao 47(5):843–848

    PubMed  CAS  Google Scholar 

  8. Colson S, Stephan J, Hertrich T, Saito A, van Wezel GP, Titgemeyer F, Rigali S (2007) Conserved cis-acting elements upstream of genes composing the chitinolytic system of streptomycetes are DasR-responsive elements. J Mol Microbiol Biotechnol 12(1–2):60–66

    Article  PubMed  CAS  Google Scholar 

  9. Delic I, Robbins P, Westpheling J (1992) Direct repeat sequences are implicated in the regulation of two Streptomyces chitinase promoters that are subject to carbon catabolite control. Proc Natl Acad Sci USA 89(5):1885–1889

    Article  PubMed  CAS  Google Scholar 

  10. Ding XZ, Luo ZH, Xia LQ, Gao B, Sun YJ, Zhang YM (2008) Improving the insecticidal activity by expression of a recombinant cry1Ac gene with chitinase-encoding gene in acrystalliferous Bacillus thuringiensis. Curr Microbiol 56(5):442–446

    Article  PubMed  CAS  Google Scholar 

  11. Driss F, Kallassy-Awad M, Zouari N, Jaoua S (2005) Molecular characterization of a novel chitinase from Bacillus thuringiensis subsp. kurstaki. J Appl Microbiol 99(4):945–953

    Article  PubMed  CAS  Google Scholar 

  12. Driss F, Rouis S, Azzouz H, Tounsi S, Zouari N, Jaoua S (2011) Integration of a recombinant chitinase into Bacillus thuringiensis parasporal insecticidal crystal. Curr Microbiol 62(1):281–288

    Article  PubMed  CAS  Google Scholar 

  13. Fujita Y (2009) Carbon catabolite control of the metabolic network in Bacillus subtilis. Biosci Biotech Bioch 73(2):245–259

    Article  CAS  Google Scholar 

  14. Hirata H, Negoro S, Okada H (1984) Molecular basis of isozyme formation of beta-galactosidases in Bacillus stearothermophilus: isolation of two beta-galactosidase genes, bgaA and bgaB. J Bacteriol 160(1):9–14

    PubMed  CAS  Google Scholar 

  15. Honeyman AL, Cote CK, Curtiss R 3rd (2002) Construction of transcriptional and translational lacZ gene reporter plasmids for use in Streptococcus mutans. J Microbiol Methods 49(2):163–171

    Article  PubMed  CAS  Google Scholar 

  16. Huang CJ, Wang TK, Chung SC, Chen CY (2005) Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. J Biochem Mol Biol 38(1):82–88

    Article  PubMed  CAS  Google Scholar 

  17. Hu SB, Liu P, Ding XZ, Yan L, Sun YJ, Zhang YM, Li WP, Xia LQ (2009) Efficient constitutive expression of chitinase in the mother cell of Bacillus thuringiensis and its potential to enhance the toxicity of Cry1Ac protoxin. Appl Microbiol Biotechnol 82(6):1157–1167

    Article  PubMed  CAS  Google Scholar 

  18. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907

    PubMed  CAS  Google Scholar 

  19. Kraus A, Hueck C, Gartner D, Hillen W (1994) Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression. J Bacteriol 176(6):1738–1745

    PubMed  CAS  Google Scholar 

  20. Lecadet MM, Chaufaux J, Ribier J, Lereclus D (1992) Construction of novel Bacillus thuringiensis strains with different insecticidal activities by transduction and transformation. Appl Environ Microbiol 58(3):840–849

    PubMed  CAS  Google Scholar 

  21. Lin Y, Xiong G (2004) Molecular cloning and sequence analysis of the chitinase gene from Bacillus thuringiensis serovar alesti. Biotechnol Lett 26(8):635–639

    Article  PubMed  CAS  Google Scholar 

  22. Liu D, Cai J, Xie CC, Liu C, Chen YH (2010) Purification and partial characterization of a 36-kDa chitinase from Bacillus thuringiensis subsp colmeri, and its biocontrol potential. Enzyme Microb Tech 46(3–4):252–256

    Article  CAS  Google Scholar 

  23. Ni X, Westpheling J (1997) Direct repeat sequences in the Streptomyces chitinase-63 promoter direct both glucose repression and chitin induction. Proc Natl Acad Sci USA 94(24):13116–13121

    Article  PubMed  CAS  Google Scholar 

  24. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111(2):229–233

    Article  PubMed  CAS  Google Scholar 

  25. Reyes-Ramirez A, Escudero-Abarca BI, Aguilar-Uscanga G, Hayward-Jones PM, Barboza-Corona JE (2004) Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J Food Sci 69(5):M131–M134

    Article  CAS  Google Scholar 

  26. Santos PM, Di Bartolo I, Blatny JM, Zennaro E, Valla S (2001) New broad-host-range promoter probe vectors based on the plasmid RK2 replicon. FEMS Microbiol Lett 195(1):91–96

    Article  PubMed  CAS  Google Scholar 

  27. Seo JW, Ohnishi Y, Hirata A, Horinouchi S (2002) ATP-binding cassette transport system involved in regulation of morphological differentiation in response to glucose in Streptomyces griseus. J Bacteriol 184(1):91–103

    Article  PubMed  CAS  Google Scholar 

  28. Thamthiankul S, Suan-Ngay S, Tantimavanich S, Panbangred W (2001) Chitinase from Bacillus thuringiensis subsp. pakistani. Appl Microbiol Biotechnol 56(3–4):395–401

    Article  PubMed  CAS  Google Scholar 

  29. van der Vossen JM, Kok J, Venema G (1985) Construction of cloning, promoter-screening, and terminator-screening shuttle vectors for Bacillus subtilis and Streptococcus lactis. Appl Environ Microbiol 50(2):540–542

    PubMed  Google Scholar 

  30. Vriesema AJ, Brinkman R, Kok J, Dankert J, Zaat SA (2000) Broad-host-range shuttle vectors for screening of regulated promoter activity in viridans group streptococci: isolation of a pH-regulated promoter. Appl Environ Microbiol 66(2):535–542

    Article  PubMed  CAS  Google Scholar 

  31. Wang SY, Wu SJ, Thottappilly G, Locy RD, Singh NK (2001) Molecular cloning and structural analysis of the gene encoding Bacillus cereus exochitinase Chi36. J Biosci Bioeng 92(1):59–66

    PubMed  CAS  Google Scholar 

  32. Xie C, Chen Y, Cai J, Liu C (2010) Essential expression and inducible synthesis polymorphism of chitinase in Bacillus thuringiensis. Chin J Biotechnol 26(11):1532–1538

    CAS  Google Scholar 

  33. Xie CC, Jia HY, Chen YH (2011) Regulation of chitinase genes expression in bacteria. Yi chuan 33(10):1029–1038

    Article  PubMed  CAS  Google Scholar 

  34. Yuan G, Wong SL (1995) Regulation of groE expression in Bacillus subtilis: the involvement of the sigma A-like promoter and the roles of the inverted repeat sequence (CIRCE). J Bacteriol 177(19):5427–5433

    PubMed  CAS  Google Scholar 

  35. Zhong WF, Fang JC, Cai PZ, Yan WZ, Wu J, Guo HF (2005) Cloning of the Bacillus thuringiensis serovar sotto chitinase (Schi) gene and characterization of its protein. Genet Mol Biol 28(4):821–826

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (No. 30971957), the Development Program of China (863 program) (No. 2011AA10A203) and the Tianjin Natural Science Foundation (No. 11JCYBJC08300 and 2012-2014). The authors thank Prof. Wei Chen at Jiangnan University of China for the gift of the plasmid pBSK-bgaB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Hua Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, CC., Luo, Y., Chen, YH. et al. Construction of a Promoter-probe Vector for Bacillus thuringiensis: the Identification of cis-acting Elements of the chiA Locus. Curr Microbiol 64, 492–500 (2012). https://doi.org/10.1007/s00284-012-0100-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0100-0

Keywords

Navigation