Skip to main content
Log in

Molecular Characterization of Chitinase Genes from a Local Isolate of Serratia marcescens and Their Contribution to the Insecticidal Activity of Bacillus thuringiensis Strains

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The chitinase B (chiB) and C (chiC) genes and flanking regions from a local isolate of Serratia marcescens were cloned individually and sequenced. Results showed that these chiB and chiC genes have a 96 % maximum similarity with chiB and chiC from different S. marcescens species (GenBank numbers Z36295.1 and AJ630582.1, respectively). The amplified chiB fragment, including some upstream and downstream regions, is 1,689-bp long with an open reading frame of 1,500 bp. The amplified fragment of chiC is 1,844 bp with an open reading frame of 1,443 bp. These sequences were submitted to the GenBank with accession numbers JX847796 (chiB) and JX847797 (chiC). Putative promoter regions and Shine–Dalgarno sequences were identified in both genes. The genes were cloned into a shuttle vector and the constructs were designated as pHYSB and pHYSC, respectively. Both plasmids were introduced separately into kurstaki and israelensis strains of Bacillus thuringiensis and the insecticidal activities of the engineered B. thuringiensis strains were assayed in larvae of Galleria mellonella and adult of Drosophila melanogaster. Engineered B. thuringiensis strains showed higher insecticidal activity than parental strain and the parental S. marcescens. In addition, pHYSB and pHYSC were stable over 16 daily passages under non-selective conditions in transformed B. t. israelensis 5724 strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  2. Agaisse H, Lereclus D (1995) How does Bacillus thuringiensis produce so much insecticidal crystal protein? J Bacteriol 177:6027–6032

    PubMed  CAS  Google Scholar 

  3. Arora N, Ahmad T, Rajagopal R, Bhatnagar RK (2003) A constitutively expressed 36 kDa exochitinase from Bacillus thuringiensis HD-1. Biochem Biophys Res Commun 307:620–625

    Article  PubMed  CAS  Google Scholar 

  4. Bahar AA, Sezen K, Demirbag Z, Nalcacioglu R (2012) The relationship between insecticidal effects and chitinase activities of Coleopteran-originated entomopathogens and their chitinolytic profile. Ann Microbiol 62:647–653

    Article  CAS  Google Scholar 

  5. Ben-Dov E, Boussiba S, Zaritsky A (1995) Mosquito larvicidal activity of Escherichia coli with combinations of genes from Bacillus thuringiensis subsp. israelensis. J Bacteriol 177:2851–2857

    PubMed  CAS  Google Scholar 

  6. Bone EJ, Ellar DJ (1989) Transformation of Bacillus thuringiensis by electroporation. FEMS Microbiol Lett 49:171–177

    Article  PubMed  CAS  Google Scholar 

  7. Brigidi P, Gonzalez-Vara RA, Rossi M, Matteuzzi D (1996) Study of stability of recombinant plasmids during the continuous culture of Bacillus stearothermophilus NUB3621 in nonselective medium. Biotechnol Bioeng 53:507–514

    Article  Google Scholar 

  8. Brurberg MB, Eijsink VG, Haandrikman AJ, Venema G, Nes IF (1995) Chitinase B from Serratia marcescens BJL200 is exported to the periplasm without processing. Microbiology 141:123–131

    Article  PubMed  Google Scholar 

  9. Ding X, Luo Z, Xia L, Gao B, Sun Y, Zhang Y (2008) Improving the insecticidal activity by expression of a recombinant cry1Ac gene with chitinase-encoding gene in acrystalliferous Bacillus thuringiensis. Curr Microbiol 56:442–447

    Article  PubMed  CAS  Google Scholar 

  10. Downing KJ, Leslie G, Thomson JA (2000) Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA genes in sugarcane-associated bacteria. Appl Environ Microbiol 66:2804–2810

    Article  PubMed  CAS  Google Scholar 

  11. Gamel PH, Piot JC (1992) Characterization and properties of a novel plasmid vector for Bacillus thuringiensis displaying compatibility with host plasmids. Gene 120:17–26

    Article  PubMed  CAS  Google Scholar 

  12. Harpster MH, Dunsmuir P (1989) Nucleotide sequence of the chitinase B gene of Serratia marcescens QMB1466. Nucleic Acids Res 17:5395

    Article  PubMed  CAS  Google Scholar 

  13. Höfte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    PubMed  Google Scholar 

  14. Kati H, Sezen K, Nalcacioglu R, Demirbag Z (2007) A highly pathogenic strain of Bacillus thuringiensis serovar kurstaki in lepidopteran pests. J Microbiol 45:553–557

    PubMed  CAS  Google Scholar 

  15. Lehane MJ (1997) Peritrophic matrix structure and function. Annu Rev Entomol 42:525–550

    Article  PubMed  CAS  Google Scholar 

  16. Lertcanawanichakul M, Wiwat C, Bhumiratana A, Dean DH (2004) Expression of chitinase encoding genes in Bacillus thuringiensis and toxicity of engineered B. thuringiensis subsp. aizawai toward Lymantria dispar larvae. Curr Microbiol 48:175–181

    Article  PubMed  CAS  Google Scholar 

  17. Lysenko O (1976) Chitinase of Serratia marcescens and its toxicity to insects. J Invertebr Pathol 27:385–386

    Article  CAS  Google Scholar 

  18. Mari YM, Espinoza AES, Ubieta R, Batista OF, Fernandez MT (1999) Effect of the selection marker on the viability and plasmid stability of two human proteins with neurotrophic action expressed in Escherichia coli. Biochem Biophys Res Commun 258:29–31

    Article  PubMed  CAS  Google Scholar 

  19. Morris ON (1976) A 2-year study of the efficacy of Bacillus thuringiensis-chitinase combinations in spruce budworm (Choristoneura fumiferana) control. Can Entomol 108:3225–3233

    Google Scholar 

  20. Nishiura JT (1988) Fractionation of two mosquitocidal activities from alkali-solubilized extracts of Bacillus thuringiensis subspecies israelensis spores and parasporal inclusions. J Invertebr Pathol 51:15–22

    Article  PubMed  CAS  Google Scholar 

  21. Okay S, Tefon BE, Ozkan M, Ozcengiz G (2007) Expression of chitinase A (chiA) gene from a local isolate of Serratia marcescens in Coleoptera-specific Bacillus thuringiensis. J Appl Microbiol 104:161–170

    PubMed  Google Scholar 

  22. Old RW, Primrose SB (1989) Principles of gene manipulation, 4th edn. Blackwell Scienti®c Publications, Oxford

    Google Scholar 

  23. Pardo-Lopez L, Munoz-Garay C, Porta H, Rodriguez-Almazan C, Soberon M, Bravo A (2009) Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis. NIH Public Access 30:589–595

    CAS  Google Scholar 

  24. Regev A, Keller M, Strizhov N, Sneh B, Prudovsky E, Chet I, Ginzberg I, Koncz-Kalman Z, Koncz C, Schell J, Zilberstein A (1996) Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl Environ Microbiol 62:3581–3586

    PubMed  CAS  Google Scholar 

  25. Saadoun I, Al-Monami F, Obeidat M, Meqdam M, Elbetieha A (2001) Assessment of toxic potential of local Jordanian B. thuringiensis strains on Drosophila melanogaster and Culex sp. (Diptera). J Appl Microbiol 90:866–872

    Article  PubMed  CAS  Google Scholar 

  26. Sevim A, Eryuzlu E, Demirbag Z, Demir I (2012) A novel cry2Ab gene from the indigenous isolate Bacillus thuringiensis subsp. kurstaki. J Microbiol Biotechnol 22:137–144

    Article  Google Scholar 

  27. Sirichotpakorn N, Rongnoparut P, Choosang K, Panbangred W (2001) Coexpression of chitinase and the cry11Aa1 toxin genes in Bacillus thuringiensis serovar israelensis. J Invertebr Pathol 78:160–169

    Article  PubMed  CAS  Google Scholar 

  28. Suzuki K, Suzuki M, Taiyoji M, Nikaidou N, Watanabe T (1998) Chitin binding protein (CBP21) in the culture supernatant of Serratia marcescens 2170. Biosci Biotechnol Biochem 62:128–135

    Article  PubMed  CAS  Google Scholar 

  29. Suzuki K, Taiyoji M, Sugawara N, Nikaidou N, Henrissat B, Watanabe T (1999) The third chitinase gene (chiC) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases. Biochem J 343:587–596

    Article  PubMed  CAS  Google Scholar 

  30. Suzuki K, Sugawara N, Suzuki M, Uchiyama T, Katouno F, Nikaidou N, Watanabe T (2002) Chitinases A, B, and C1 of Serratia marcescens 2170 produced by recombinant Escherichia coli: enzymatic properties and synergism on chitin degradation. Biosci Biotechnol Biochem 66:1075–1083

    Article  PubMed  CAS  Google Scholar 

  31. Tantimavanich S, Pantuwatana S, Bhumiratana A, Panbangred W (1997) Cloning of a chitinase gene into Bacillus thuringiensis subsp. aizawai for enhanced insecticidal activity. J Gen Appl Microbiol 43:341–347

    Article  PubMed  CAS  Google Scholar 

  32. Tews I, Vincentelli R, Vorgias CE (1996) N-Acetylglucosaminidase (chitobiase) from Serratia marcescens: gene sequence, and protein production and purification in Escherichia coli. Gene 170:63–67

    Article  PubMed  CAS  Google Scholar 

  33. Watanabe T, Kimura K, Sumiya T, Nikaidou N, Suzuki K, Suzuki M, Taiyoji M, Ferrer S, Regue M (1997) Genetic analysis of the chitinase system of Serratia marcescens 2170. J Bacteriol 179:7111–7117

    PubMed  CAS  Google Scholar 

  34. White F, Kramer KJ, Johnson L, Muthukrishnan S (1997) Chitinases for insect control. In: Koziel M, Carozzi N (eds) Advances in insect control, the role of transgenic plants. CRC Press, Boca Raton. ISBN 978-0-7484-0417-9

    Google Scholar 

  35. Wiwat C, Lertcanawanichakul M, Siwayapram P, Pantuwatana S, Bhumiratana A (1996) Expression of chitinase-encoding genes from Aeromonas hydrophila and Pseudomonas maltophilia in Bacillus thuringiensis subsp. israelensis. Gene 179:119–126

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank to Prof. Handan Uysal (Atatürk University, Department of Biology) for providing the Drosophila melanogaster insects. We thank Prof. Basil Arif for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remziye Nalcacioglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozgen, A., Sezen, K., Demir, I. et al. Molecular Characterization of Chitinase Genes from a Local Isolate of Serratia marcescens and Their Contribution to the Insecticidal Activity of Bacillus thuringiensis Strains. Curr Microbiol 67, 499–504 (2013). https://doi.org/10.1007/s00284-013-0395-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0395-5

Keywords

Navigation