Skip to main content

Advertisement

Log in

Craniocervical abnormalities in osteogenesis imperfecta type V

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Craniocervical abnormalities in osteogenesis imperfecta (OI) such as basilar invagination or cervical kyphosis can cause severe neurological morbidity. These abnormalities may be more frequent in OI type V compared with other OI subtypes of similar disease severity, underlining the importance of screening in this group.

Introduction

Craniocervical abnormalities in osteogenesis imperfecta (OI) can cause severe neurological morbidity. Although radiological cranial base abnormalities in OI have been well described in the literature, there are limited data on these abnormalities in OI type V and their association with clinical sequelae.

Methods

A retrospective case series on patients with craniocervical abnormalities in OI type V at our institution.

Results

Craniocervical abnormalities were present in 7 of 37 patients with OI type V (19%). For 5 patients (age at last follow-up: 5 to 26 years; 2 females), sufficient information was available for inclusion in the case series. All had genetically confirmed OI type V. Age range at diagnosis of the craniocervical abnormality was 1 day to 18 years. Basilar invagination was present in 3 patients; 2 had cervical kyphosis. Dysplasia of upper cervical vertebrae or base of skull was seen in 3 patients. The severity of the craniocervical abnormality did not clearly correlate with the severity of the OI phenotype. Three patients required surgical intervention (ages 7, 11, and 26 years) due to compression of the spinal cord or brainstem. Craniocervical abnormalities were detected incidentally or on screening in 3 patients, and only 2 had significant positive findings on neurological examination.

Conclusion

A variety of craniocervical abnormalities are seen in OI type V including dysplasia of the cervical vertebrae. These cases highlight the importance of screening patients with OI type V with lateral skull and cervical spine x-rays throughout childhood and after skeletal maturity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Forlino A, Marini JC (2016) Osteogenesis imperfecta. Lancet 387(10028):1657–1671. https://doi.org/10.1016/s0140-6736(15)00728-x

    Article  CAS  PubMed  Google Scholar 

  2. Bardai G, Moffatt P, Glorieux FH, Rauch F (2016) DNA sequence analysis in 598 individuals with a clinical diagnosis of osteogenesis imperfecta: diagnostic yield and mutation spectrum. Osteoporos Int 27(12):3607–3613. https://doi.org/10.1007/s00198-016-3709-1

    Article  CAS  PubMed  Google Scholar 

  3. Glorieux FH, Rauch F, Plotkin H, Ward L, Travers R, Roughley P et al (2000) Type V osteogenesis imperfecta: a new form of brittle bone disease. J Bone Miner Res 15(9):1650–1658. https://doi.org/10.1359/jbmr.2000.15.9.1650

    Article  CAS  PubMed  Google Scholar 

  4. Rauch F, Moffatt P, Cheung M, Roughley P, Lalic L, Lund AM et al (2013) Osteogenesis imperfecta type V: marked phenotypic variability despite the presence of the IFITM5 c.-14C>T mutation in all patients. J Med Genet 50(1):21–4. https://doi.org/10.1136/jmedgenet-2012-101307

    Article  CAS  PubMed  Google Scholar 

  5. Semler O, Garbes L, Keupp K, Swan D, Zimmermann K, Becker J et al (2012) A mutation in the 5’-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfecta type V with hyperplastic callus. Am J Hum Genet 91(2):349–357. https://doi.org/10.1016/j.ajhg.2012.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cho TJ, Lee KE, Lee SK, Song SJ, Kim KJ, Jeon D et al (2012) A single recurrent mutation in the 5’-UTR of IFITM5 causes osteogenesis imperfecta type V. Am J Hum Genet 91(2):343–348. https://doi.org/10.1016/j.ajhg.2012.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Patoine A, Gaumond MH, Jaiswal PK, Fassier F, Rauch F, Moffatt P (2014) Topological mapping of BRIL reveals a type II orientation and effects of osteogenesis imperfecta mutations on its cellular destination. J Bone Miner Res 29(9):2004–2016. https://doi.org/10.1002/jbmr.2243

    Article  CAS  PubMed  Google Scholar 

  8. Sillence DO (1994) Craniocervical abnormalities in osteogenesis imperfecta: genetic and molecular correlation. Pediatr Radiol 24(6):427–430. https://doi.org/10.1007/bf02011910

    Article  CAS  PubMed  Google Scholar 

  9. Kovero O, Pynnonen S, Kuurila-Svahn K, Kaitila I, Waltimo-Siren J (2006) Skull base abnormalities in osteogenesis imperfecta: a cephalometric evaluation of 54 patients and 108 control volunteers. J Neurosurg 105(3):361–370. https://doi.org/10.3171/jns.2006.105.3.361

    Article  PubMed  Google Scholar 

  10. Cheung MS, Arponen H, Roughley P, Azouz ME, Glorieux FH, Waltimo-Siren J et al (2011) Cranial base abnormalities in osteogenesis imperfecta: phenotypic and genotypic determinants. J Bone Miner Res 26(2):405–413. https://doi.org/10.1002/jbmr.220

    Article  PubMed  Google Scholar 

  11. Ibrahim AG, Crockard HA (2007) Basilar impression and osteogenesis imperfecta: a 21-year retrospective review of outcomes in 20 patients. J Neurosurg Spine 7(6):594–600. https://doi.org/10.3171/spi-07/12/594

    Article  PubMed  Google Scholar 

  12. Arponen H, Vuorimies I, Haukka J, Valta H, Waltimo-Sirén J, Mäkitie O (2015) Cranial base pathology in pediatric osteogenesis imperfecta patients treated with bisphosphonates. J Neurosurg Pediatr 15(3):313–320. https://doi.org/10.3171/2014.11.Peds14113

    Article  PubMed  Google Scholar 

  13. Ogden CL, Kuczmarski RJ, Flegal KM, Mei Z, Guo S, Wei R et al (2002) Centers for Disease Control and Prevention 2000 growth charts for the United States: improvements to the 1977 National Center for Health Statistics version. Pediatrics 109(1):45–60

    Article  Google Scholar 

  14. Pargas C, Franzone JM, Rogers KJ, Artinian F, Santana A, Shah SA et al (2020) Cervical kyphosis: a predominant feature of patients with osteogenesis imperfecta type 5. Bone Rep 13:100735. https://doi.org/10.1016/j.bonr.2020.100735

    Article  PubMed  PubMed Central  Google Scholar 

  15. Blouin S, Fratzl-Zelman N, Glorieux FH, Roschger P, Klaushofer K, Marini JC et al (2017) Hypermineralization and high osteocyte lacunar density in osteogenesis imperfecta type V bone indicate exuberant primary bone formation. J Bone Miner Res 32(9):1884–1892. https://doi.org/10.1002/jbmr.3180

    Article  CAS  PubMed  Google Scholar 

  16. Weber M, Roschger P, Fratzl-Zelman N, Schöberl T, Rauch F, Glorieux FH et al (2006) Pamidronate does not adversely affect bone intrinsic material properties in children with osteogenesis imperfecta. Bone 39(3):616–622. https://doi.org/10.1016/j.bone.2006.02.071

    Article  CAS  PubMed  Google Scholar 

  17. Nakamura M, Yone K, Yamaura I, Ryoki Y, Okano N, Higo M et al (2002) Treatment of craniocervical spine lesion with osteogenesis imperfecta: a case report. Spine 27(8):E224–E227

    Article  Google Scholar 

  18. Daivajna S, Jones A, Hossein Mehdian SM (2005) Surgical management of severe cervical kyphosis with myelopathy in osteogenesis imperfecta: a case report. Spine (Phila Pa 1976) 30(7):E191-4. https://doi.org/10.1097/01.brs.0000157471.44284.a2

    Article  Google Scholar 

  19. Pang D, Thompson D (2010) Embryology and bony malformations of the craniovertebral junction. Childs Nerv Syst 27:523–564

    Article  Google Scholar 

  20. Chen W, Liu J, Yuan D, Zuo Y, Liu Z, Liu S et al (2016) Progress and perspective of TBX6 gene in congenital vertebral malformations. Oncotarget 7(35):57430–41. https://doi.org/10.18632/oncotarget.10619

    Article  PubMed  PubMed Central  Google Scholar 

  21. Aruga J, Mizugishi K, Koseki H, Imai K, Balling R, Noda T et al (1999) Zic1 regulates the patterning of vertebral arches in cooperation with Gli3. Mech Dev 89(1):141–150. https://doi.org/10.1016/S0925-4773(99)00220-8

    Article  CAS  PubMed  Google Scholar 

  22. Moffatt P, Gaumond M-H, Salois P, Sellin K, Bessette M-C, Godin É et al (2008) Bril: a novel bone-specific modulator of mineralization. J Bone Miner Res 23(9):1497–1508. https://doi.org/10.1359/jbmr.080412

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by The Shriners of North America. The authors thank the patients and their families for participation in this case series.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rauch.

Ethics declarations

Ethics approval

This case series was determined not to be research by the Shriners Hospitals for Children, Tampa, Florida.

Consent to participate

Not applicable.

Consent for publication

Written informed consent was obtained from patients (or a legal guardian if under 14 years old) for publication of clinical information and images in this case series.

Conflicts of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludwig, K., Seiltgens, C., Ibba, A. et al. Craniocervical abnormalities in osteogenesis imperfecta type V . Osteoporos Int 33, 177–183 (2022). https://doi.org/10.1007/s00198-021-06088-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-021-06088-x

Keywords

Navigation