Skip to main content
Log in

Investigation of the elastically shock-compressed region and elastic–plastic shock transition in single-crystalline copper to understand the dislocation nucleation mechanism under shock compression

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Shock-induced plasticity in FCC crystals has been demonstrated in many experimental and numerical simulation studies. Even though some theories have been proposed with regard to dislocation nucleation, the phenomenon occurring in the elastically shock-compressed region and the elastic–plastic transition region, which might be the origin region for dislocation nucleation, is largely unexplored. In this work, we present a molecular dynamics simulation of the shock compression of a Cu single crystal along the 〈110〉 direction specifically focusing on the mechanisms observed in the elastically compressed and the elastic–plastic transition regions. A distribution of planes of high and low atomic volume is observed in the elastically compressed region near the shock front, but the distribution becomes random as the elastic–plastic transition regime is approached. Density variations are also observed. It is observed that the formation of the defects initiates through local atomic shuffling/rearrangement. Shear stress distribution shows values greater than those required for homogeneous nucleation, and Shockley partials are observed at a certain region behind the shock front. Potential energy variations are also observed in these regions, explaining the mechanisms leading to dislocation nucleation. The present findings shed new insight into the mechanism of dislocation nucleation in shock-induced single-crystal FCC metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Murr, L., Meyers, M.A.: Metallurgical effects of shock and pressure waves in metals. In: Blazynski, T.Z. (ed.) Explosive Welding, Forming and Compaction, pp. 83–121. Springer, Dordrecht (1983). https://doi.org/10.1007/978-94-011-9751-9_3

    Chapter  Google Scholar 

  2. Gray, G., Follansbee, P., Frantz, C.: Effect of residual strain on the substructure development and mechanical response of shock-loaded copper. Mater. Sci. Eng. A 111, 9–16 (1989). https://doi.org/10.1016/0921-5093(89)90192-5

    Article  Google Scholar 

  3. Schneider, M.S., Kad, B., Kalantar, D.H., Remington, B.A., Kenik, E., Jarmakani, H., Meyers, M.A.: Laser shock compression of copper and copper–aluminum alloys. Int. J. Impact Eng. 32, 473–507 (2005). https://doi.org/10.1016/j.ijimpeng.2005.05.010

    Article  Google Scholar 

  4. Mogilevskii, M.: Structural changes in pure copper subjected to explosive loading. Combust. Explor. Shock Waves 6, 197–201 (1970). https://doi.org/10.1007/BF00742929

    Article  Google Scholar 

  5. Zong, H., Lookman, T., Ding, X., Luo, S.-N., Sun, J.: Anisotropic shock response of titanium: Reorientation and transformation mechanisms. Acta Mater. 65, 10–18 (2014). https://doi.org/10.1016/j.actamat.2013.11.047

    Article  Google Scholar 

  6. Kadau, K., Germann, T.C., Lomdahl, P.S., Holian, B.L.: Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals. Phys. Rev. B 72, 064120 (2005). https://doi.org/10.1103/PhysRevB.72.064120

    Article  Google Scholar 

  7. Lin, E., Shi, H., Niu, L.: Effects of orientation and vacancy defects on the shock Hugoniot behavior and spallation of single-crystal copper. Model. Simul. Mater. Sci. Eng. 22, 035012 (2014). https://doi.org/10.1088/0965-0393/22/3/035012

    Article  Google Scholar 

  8. Schneider, M., Kad, B., Meyers, M., Gregori, F., Kalantar, D., Remington, B.: Laser-induced shock compression of copper: Orientation and pressure decay effects. Metall. Mater. Trans. A 35, 2633–2646 (2004). https://doi.org/10.1007/s11661-004-0209-2

    Article  Google Scholar 

  9. Germann, T.C., Holian, B.L., Lomdahl, P.S., Ravelo, R.: Orientation dependence in molecular dynamics simulations of shocked single crystals. Phys. Rev. Lett. 84, 5351 (2000). https://doi.org/10.1103/PhysRevLett.84.5351

    Article  Google Scholar 

  10. Neogi, A., Mitra, N.: Shock induced deformation response of single crystal copper: Effect of crystallographic orientation. Comput. Mater. Sci. 135, 141–151 (2017). https://doi.org/10.1016/j.commatsci.2017.04.009

    Article  Google Scholar 

  11. Sichani, M.M., Spearot, D.E.: A molecular dynamics study of dislocation density generation and plastic relaxation during shock of single crystal Cu. J. Appl. Phys. 120, 045902 (2016). https://doi.org/10.1063/1.4959075

    Article  Google Scholar 

  12. Smith, C.S.: Metallographic studies of metals after explosive shock. Trans. Metall. Soc. AIME 212 (1958)

  13. Hornbogen, E.: Shock-induced dislocations. Acta Metall. 10, 978–980 (1962). https://doi.org/10.1016/0001-6160(62)90153-0

    Article  Google Scholar 

  14. Meyers, M.A.: A mechanism for dislocation generation in shock-wave deformation. Scr. Metall. 12, 21–26 (1978). https://doi.org/10.1016/0036-9748(78)90219-3

    Article  Google Scholar 

  15. Zaretsky, E.: Dislocation multiplication behind the shock front. J. Appl. Phys. 78, 3740–3747 (1995). https://doi.org/10.1063/1.359954

    Article  Google Scholar 

  16. Cao, B., Bringa, E.M., Meyers, M.A.: Shock compression of monocrystalline copper: Atomistic simulations. Metall. Mater. Trans. A 38, 2681–2688 (2007). https://doi.org/10.1007/s11661-007-9248-9

    Article  Google Scholar 

  17. Meyers, M.A., Gregori, F., Kad, B., Schneider, M., Kalantar, D., Remington, B., Ravichandran, G., Boehly, T., Wark, J.: Laser-induced shock compression of monocrystalline copper: characterization and analysis. Acta Mater. 51, 1211–1228 (2003). https://doi.org/10.1016/S1359-6454(02)00420-2

    Article  Google Scholar 

  18. Tanguy, D., Mareschal, M., Lomdahl, P.S., Germann, T.C., Holian, B.L., Ravelo, R.: Dislocation nucleation induced by a shock wave in a perfect crystal: Molecular dynamics simulations and elastic calculations. Phys. Rev. B 68, 144111 (2003). https://doi.org/10.1103/PhysRevB.68.144111

    Article  Google Scholar 

  19. Wen, P., Tao, G., Pang, C., Yuan, S., Wang, Q.: A molecular dynamics study of the shock-induced defect microstructure in single crystal Cu. Comput. Mater. Sci. 124, 304–310 (2016). https://doi.org/10.1016/j.commatsci.2016.08.010

    Article  Google Scholar 

  20. Xu, G., Argon, A.S.: Homogeneous nucleation of dislocation loops under stress in perfect crystals. Philos. Mag. Lett. 80, 605–611 (2000). https://doi.org/10.1080/09500830050134318

    Article  Google Scholar 

  21. Tanguy, D., Mareschal, M., Germann, T.C., Holian, B.L., Lomdahl, P.S., Ravelo, R.: Plasticity induced by a shock wave: large scale molecular dynamics simulations. Mater. Sci. Eng. A 387, 262–265 (2004). https://doi.org/10.1016/j.msea.2004.02.088

    Article  Google Scholar 

  22. Shehadeh, M.A., Zbib, H.M.: On the homogeneous nucleation and propagation of dislocations under shock compression. Philos. Mag. 96, 2752–2778 (2016). https://doi.org/10.1080/14786435.2016.1213444

    Article  Google Scholar 

  23. Gurrutxaga-Lerma, B., Balint, D.S., Dini, D., Eakins, D.E., Sutton, A.P.: Attenuation of the dynamic yield point of shocked aluminum using elastodynamic simulations of dislocation dynamics. Phys. Rev. Lett. 114, 174301 (2015). https://doi.org/10.1103/PhysRevLett.114.174301

    Article  Google Scholar 

  24. Zhakhovsky, V.V., Budzevich, M.M., Inogamov, N.A., Oleynik, I.I., White, C.T.: Two-zone elastic–plastic single shock waves in solids. Phys. Rev. Lett. 107, 1335502 (2011). https://doi.org/10.1103/PhysRevLett.107.135502

    Article  Google Scholar 

  25. Shu, H., Fu, S., Huang, X., Pan, H., Zhang, F., Xie, Z., Ye, J., Jia, G.: Plastic behavior of aluminum in high strain rate regime. J. Appl. Phys. 116, 033506 (2014). https://doi.org/10.1063/1.4890012

    Article  Google Scholar 

  26. Bringa, E., Wirth, B., Caturla, M., Stölken, J., Kalantar, D.: Metals far from equilibrium: From shocks to radiation damage. Nucl. Instrum. Methods B 202, 56–63 (2003). https://doi.org/10.1016/S0168-583X(02)01831-1

    Article  Google Scholar 

  27. Kanel, G.I., Savinykh, A.S., Garkushin, G.V., Razorenov, S.V., Ashitkov, S.I., Zaretsky, E.B.: Peculiarities of evolutions of elastic–plastic shock compression waves in different materials. J. Phys. Conf. Ser. 774, 012048 (2016). https://doi.org/10.1088/1742-6596/774/1/012048

    Article  Google Scholar 

  28. Gurrutxaga-Lerma, B., Shehadeh, M.A., Balint, D.S., Dini, D., Chen, L., Eakins, D.E.: The effect of temperature on the elastic precursor decay in shock loaded FCC aluminium and BCC iron. Int. J. Plasticity 96, 135–155 (2017). https://doi.org/10.1016/j.ijplas.2017.05.001

    Article  Google Scholar 

  29. Demaske, B.J., Zhakhovsky, V.V., Inogamov, N.A., Oleynik, I.I.: Ultrashort shock waves in nickel induced by femtosecond laser pulses. Phys. Rev. B 87, 054109 (2013). https://doi.org/10.1103/PhysRevB.87.054109

    Article  Google Scholar 

  30. Luo, S.-N., Germann, T.C., Tonks, D.L.: The effect of vacancies on dynamic response of single crystal Cu to shock waves. J. Appl. Phys. 107, 056102 (2010). https://doi.org/10.1063/1.3326941

    Article  Google Scholar 

  31. Hahn, E., Zhao, S., Bringa, E., Meyers, M.: Supersonic dislocation bursts in silicon. Sci. Rep. 6, 26977 (2016). https://doi.org/10.1038/srep26977

    Article  Google Scholar 

  32. Bringa, E., Rosolankova, K., Rudd, R., Remington, B., Wark, J., Duchaineau, M., Kalantar, D., Hawreliak, J., Belak, J.: Shock deformation of face-centred-cubic metals on subnanosecond timescales. Nat. Mater. 5, 805–809 (2006). https://doi.org/10.1038/nmat1735

    Article  Google Scholar 

  33. Taylor, P.A., Dodson, B.W.: Propagating lattice instabilities in shock-loaded metals. Phys. Rev. B 42, 1200 (1990). https://doi.org/10.1103/PhysRevB.42.1200

    Article  Google Scholar 

  34. Zhakhovsky, V.V., Inogamov, N.A., Demaske, B.J., Oleynik, I.I., White, C.T.: Elastic–plastic collapse of super-elastic shock waves in face-centered-cubic solids. J. Phys: Conf. Ser. 500(17), 172007 (2004). https://doi.org/10.1088/1742-6596/500/17/172007

    Google Scholar 

  35. Zaretsky, E., Kanel, G.: Response of copper to shock-wave loading at temperatures up to the melting point. J. Appl. Phys. 114, 083511 (2013). https://doi.org/10.1063/1.4819328

    Article  Google Scholar 

  36. Zaretsky, E.B., Kanel, G.I.: The high temperature impact response of tungsten and chromium. J. Appl. Phys. 122, 115901 (2017). https://doi.org/10.1063/1.4997674

    Article  Google Scholar 

  37. Kanel, G.I., Zaretsky, E.B., Razorenov, S.V., Ashitkov, S.I., Fortov, V.E.: Unusual plasticity and strength of metals at ultra-short load durations. Phys. Usp. 60, 490–508 (2017). https://doi.org/10.3367/UFNe.2016.12.038004

    Article  Google Scholar 

  38. El Kadiri, H., Barrett, C.D., Tschopp, M.A.: The candidacy of shuffle and shear during compound twinning in hexagonal close-packed structures. Acta Mater. 61, 7646–7659 (2013). https://doi.org/10.1016/j.actamat.2013.09.002

    Article  Google Scholar 

  39. Ostapovets, A., Molnár, P.: On the relationship between the “shuffling-dominated” and “shear-dominated” mechanisms for {10\(\bar{1}\)2} twinning in magnesium. Scr. Mater. 69, 287–290 (2013). https://doi.org/10.1016/j.scriptamat.2013.04.019

    Article  Google Scholar 

  40. Wang, J., Yadav, S.K., Hirth, J.P., Tomé, C.N., Beyerlein, I.J.: Pure-shuffle nucleation of deformation twins in hexagonal-close-packed metals. Mater. Res. Lett. 1, 126–132 (2013). https://doi.org/10.1080/21663831.2013.792019

    Article  Google Scholar 

  41. Ishii, A., Li, J., Ogata, S.: Shuffling-controlled versus strain-controlled deformation twinning: The case for HCP Mg twin nucleation. Int. J. Plast. 82, 32–43 (2016). https://doi.org/10.1016/j.ijplas.2016.01.019

    Article  Google Scholar 

  42. Yang, X.S., Sun, S., Ruan, H.H., Shi, S.Q., Zhang, T.Y.: Shear and shuffling accomplishing polymorphic fcc γ → hcp ε → bct α martensitic phase transformation. Acta Mater. 136, 347–354 (2017). https://doi.org/10.1016/j.actamat.2017.07.016

    Article  Google Scholar 

  43. Wang, H.L., Hao, Y.L., He, S.Y., Du, K., Li, T., Obbard, E.G., Hudspeth, J., Wang, J.G., Wang, Y.D., Wang, Y., Prima, F., Lu, N., Kim, M.J., Cairney, J.M., Li, S.J., Yang, R.: Tracing the coupled atomic shear and shuffle for a cubic to a hexagonal crystal transition. Scr. Mater. 133, 70–74 (2017). https://doi.org/10.1016/j.scriptamat.2017.02.024

    Article  Google Scholar 

  44. Neogi, A., Mitra, N.: Evolution of dislocation mechanisms in single-crystal Cu under shock loading in different directions. Model. Simul. Mater. Sci. Eng. 25, 025013 (2017). https://doi.org/10.1088/1361-651X/aa5850

    Article  Google Scholar 

  45. Neogi, A., Mitra, N.: A metastable phase of shocked bulk single crystal copper: an atomistic simulation study. Sci. Rep. 7, 7337 (2017). https://doi.org/10.1038/s41598-017-07809-1

    Article  Google Scholar 

  46. Holian, B.L., Lomdahl, P.S.: Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations. Science 280, 2085–2088 (1998). https://doi.org/10.1126/science.280.5372.2085

    Article  Google Scholar 

  47. Mishin, Y., Mehl, M., Papaconstantopoulos, D., Voter, A., Kress, J.: Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63, 224106 (2001). https://doi.org/10.1103/PhysRevB.63.224106

    Article  Google Scholar 

  48. Neogi, A., Mitra, N.: On shock response of nano-void closed/open cell copper material: Non-equilibrium molecular dynamic simulations. J. Appl. Phys. 115, 013504 (2014). https://doi.org/10.1063/1.4861029

    Article  Google Scholar 

  49. Zhao, S., Germann, T.C., Strachan, A.: Atomistic simulations of shock-induced alloying reactions in Ni/Al nanolaminates. J. Chem. Phys. 125, 164707 (2006). https://doi.org/10.1063/1.2359438

    Article  Google Scholar 

  50. Zhao, F.P., Li, B., Jian, W.R., Wang, L., Luo, S.N.: Shock-induced melting of honeycomb-shaped Cu nanofoams: Effects of porosity. J. Appl. Phys. 118, 035904 (2015). https://doi.org/10.1063/1.4926785

    Article  Google Scholar 

  51. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  MATH  Google Scholar 

  52. Jarmakani, H., Bringa, E., Erhart, P., Remington, B., Wang, Y., Vo, N., Meyers, M.: Molecular dynamics simulations of shock compression of nickel: From monocrystals to nanocrystals. Acta Mater. 56, 5584–5604 (2008). https://doi.org/10.1016/j.actamat.2008.07.052

    Article  Google Scholar 

  53. Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2009). https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  54. Stukowski, A.: Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng. 20, 045021 (2012). https://doi.org/10.1088/0965-0393/20/4/045021

    Article  Google Scholar 

  55. Stukowski, A., Bulatov, V.V., Arsenlis, A.: Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sci. Eng. 20, 085007 (2012). https://doi.org/10.1088/0965-0393/20/8/085007

    Article  Google Scholar 

  56. Rycroft, C.H.: Voro ++: a three-dimensional Voronoi cell library in C++. Chaos 19, 041111 (2009). https://doi.org/10.1063/1.3215722

    Article  Google Scholar 

  57. Bourne, N.K., Millett, J.C.F., Gray, G.T.: On the shock compression of polycrystalline metals. J. Mater. Sci. 44, 3319–3343 (2009). https://doi.org/10.1007/s10853-009-3394-y

    Article  Google Scholar 

  58. Faken, D., Jónsson, H.: Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2, 279–286 (1994). https://doi.org/10.1016/0927-0256(94)90109-0

    Article  Google Scholar 

  59. Tsuzuki, H., Branicio, P.S., Rino, J.P.: Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput. Phys. Commun. 177, 518–523 (2007). https://doi.org/10.1016/j.cpc.2007.05.018

    Article  Google Scholar 

  60. Alyea, H.N.: Potential energy curves in general chemistry. J. Chem. Educ. 19, 337 (1942). https://doi.org/10.1021/ed019p337

    Article  Google Scholar 

  61. Shehadeh, M.A., Bringa, E.M., Zbib, H.M., McNaney, J.M., Remington, B.A.: Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleations. Appl. Phys. Lett. 89, 171918 (2006). https://doi.org/10.1063/1.2364853

    Article  Google Scholar 

  62. Hirth, J.P., Lothe, J.: Theory of Dislocations. Krieger Publishing Company, Huntington (1982)

    MATH  Google Scholar 

  63. Sanders, P.G., Eastman, J.A., Weertman, J.R.: Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater. 45, 4019–4025 (1997). https://doi.org/10.1016/S1359-6454(97)00092-X

    Article  Google Scholar 

  64. Hull, D., Bacon, D.J.: Introduction to Dislocations, 5th edn. Elsevier/Butterworth-Heinemann, Amsterdam (2011). https://doi.org/10.1016/B978-0-08-096672-4.00019-0

    Google Scholar 

Download references

Funding

Funding from the Department of Science and Technology (India) through Grant DST/RC–UK/14–AM/2012 for the project “Modeling of Advanced Materials for Simulation of Transformative Manufacturing Processes (MAST)” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Mitra.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by A. Higgins.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisht, A., Neogi, A., Mitra, N. et al. Investigation of the elastically shock-compressed region and elastic–plastic shock transition in single-crystalline copper to understand the dislocation nucleation mechanism under shock compression. Shock Waves 29, 913–927 (2019). https://doi.org/10.1007/s00193-018-00887-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-018-00887-8

Keywords

Navigation