Skip to main content

Metallurgical Effects of Shock and Pressure Waves in Metals

  • Chapter
Explosive Welding, Forming and Compaction

Abstract

It is a well-known fact that the mechanical response of metals depends upon the temperature, the velocity of deformation, the previous deformation undergone, and the stress state, among other parameters. As a result, various attempts have been made to incorporate these parameters into a single equation that would have the capability of predicting the response of a specific metal under a wide range of circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argon, A. S., ed. Constitutive Equations in Plasticity, MIT Press, Cambridge, Mass, 1975.

    Google Scholar 

  2. Hart, E. W. Trans. AS.M.E., 98 (1976), 193.

    Google Scholar 

  3. Swearengen, J. C., Rohde, R. W., and Hicks, D. L. Acta Met., 24 (1976), 969.

    Article  Google Scholar 

  4. Campbell, J. D. Dynamic Plasticity of Metals, Springer-Verlag, Vienna Austria, 1972.

    MATH  Google Scholar 

  5. Maiden, C. J., and Green, S. V., Trans. A.S.M.E., J. Appl. Mech., 33 (1966), 496.

    Article  ADS  Google Scholar 

  6. Lindholm, U. S. In Techniques of Metals Research, Vol. 5, ed. R. F. Bunshah, Interscience, NY, 1974, p. 199.

    Google Scholar 

  7. Lindholm, U. S., and Yearley, J. Exptl. Meek, 1 (1967), 1.

    Article  Google Scholar 

  8. Culver, R. S., Exptl. Mech., 12 (1972).

    Google Scholar 

  9. Culver, R. S. In Metallurgical Effects at High Strain Rates, Eds. R. W. Rohde, B. M. Butcher, J. R. Holland, and C. H. Karnes, Plenum, N. Y., 1973, p. 519.

    Google Scholar 

  10. Warnes, R. H. Duffey, T. A. Karpp, R. R., and Carden, A. E., inShock Waves and High-Rate Phenomena in Metals: Concepts and Applications, eds. M. A. Meyers and L. E. Murr, Plenum, N. Y., 1981, p. 23.

    Chapter  Google Scholar 

  11. Kolsky, H. Proc. Phys. Soc. (London) B62 (1949), 676.

    ADS  Google Scholar 

  12. Wasley, R. J. Stress Wave Propagation in Solids, M. Dekker, New York, 1973.

    Google Scholar 

  13. Orava, R. N., and Wittman, R. H. In Advances in Deformation Processing, eds. V. Weiss and J. Burke, Plenum, N.Y. 1978.

    Google Scholar 

  14. Orava, R. N. In Proceedings of the First International Conference of the Center for High Energy Forming, ed. A. A. Ezra, U. of Denver, Colo., 1978, p. 7.5.1.

    Google Scholar 

  15. Zener, C., and Hollomon, J. H. J. Appl. Phys., 15 (1944), 22.

    Article  ADS  Google Scholar 

  16. Olson, G. B., Mescall, J. F., and Azrin, M. In Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications, eds. M. A. Meyers and L. E. Murr, Plenum, N. Y. 1981, Chapter 14, p. 221.

    Chapter  Google Scholar 

  17. Shockey, D. A., and Erlich, D. C. Source cited in ref. 16, chapter 15, p. 249.

    Google Scholar 

  18. Doraivelu, S. M., Gopinathan, V., and Venkatesh, V. C. Source cited in ref. 16, chapter 16, p. 263.

    Google Scholar 

  19. Rogers, H. C., and Shastry, C. V. Sources cited in ref. 16, Chapter 18, p. 285.

    Google Scholar 

  20. Moss, G. L. Source cited in ref. 16, chapter 19, p. 299.

    Google Scholar 

  21. National Materials Advisory Board, Materials Response to Ultra-High Loading Rates. Report NMAB 356, 1980, Chapter 8.

    Google Scholar 

  22. Walsh, J. M., and Christian, R. H. Phys. Rev. 97 (1955), 1544.

    Article  ADS  Google Scholar 

  23. Grace, F. I. J. Appl. Phys., 40 (1969), 2649.

    Article  ADS  Google Scholar 

  24. Hsu, C. Y., Hsu, K. C., Murr, L. E., and Meyers, M. A. Source cited in ref. 16, p. 433.

    Google Scholar 

  25. Meyers, M. A., and Murr, L. E. (eds.) Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications, 1981, Plenum Press, New York.

    Google Scholar 

  26. Graham, R. A. InShock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications, Chap. 23, Meyers, M. A. and Murr, L. E. (eds) 1981, Plenum Press, New York.

    Google Scholar 

  27. Murr, L. E. In Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications, Chap. 37, Meyers, M. A., and Murr, L. E. (eds.) 1981, Plenum Press, New York.

    Google Scholar 

  28. Moin, E., and Murr, L. E. Mater. Sci. Engr., 37 (1979), 249.

    Article  Google Scholar 

  29. Greulich, F., and Murr, L. E. Mater. Sci. Engr., 39 (1979), 81.

    Article  Google Scholar 

  30. Kestenbach, H.-J., and Meyers, M. A. Met. Trans., 7A (1976).

    Google Scholar 

  31. Wongwiwat, K., and Murr, L. E. Mater. Sci., Engr., 35 (1978), 273.

    Article  Google Scholar 

  32. Murr, L. E. Interfacial Phenomena in Metals and Alloys, 1975, Addison-Wesley, Reading, Mass.

    Google Scholar 

  33. Murr, L. E., and Kuhlmann-Wilsdorf, D. Acta Met., 26 (1978), 847.

    Article  Google Scholar 

  34. Rack, H. J. Met. Trans., 7A (1976), 1571.

    Google Scholar 

  35. Ashby, M. F. Phil. Mag., 21 (1970), 399.

    Article  ADS  Google Scholar 

  36. Murr, L. E. In Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications, Chap. 42, Meyers, M. A. and Murr, L. E. (eds.), 1981, Plenum Press, New York.

    Google Scholar 

  37. Mcqueen, R. G., and Marsh, S. P. J. Appl. Phys., 31 (1960), 1253.

    Article  ADS  Google Scholar 

  38. Murr, L. E., and Rose, M. F. Phil Mag., 18 (1968), 281.

    Google Scholar 

  39. Meyers, M. A., and Murr, L. E. In Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications, Chap. 30, Meyers, M. A., and Murr, L. E., (eds.), 1981, Plenum Press, New York.

    Chapter  Google Scholar 

  40. Kressel, H., and Brown, N. Appl. Phys., 38 (1967), 1618.

    Google Scholar 

  41. Murr, L. E., Inal, O. T., and Morales, A. A., Acta Met., 24 (1976), 261.

    Article  Google Scholar 

  42. Murr, L. E., Inal, O. T., and Morales, A. A. Appl. Letters, 28 (1976), 432.

    Article  ADS  Google Scholar 

  43. Stein, C. Scripta Met., 9 (1975), 67.

    Article  Google Scholar 

  44. Murr, L. E., Vydyanath, H. R., and Foltz, J. V. Met. Trans., Al (1970), 3215.

    Google Scholar 

  45. Meyers, M. A. Thermomechanical Processing of a Nickel-Base Superalloy by Cold-Rolling and Shock-Wave Deformation, Ph.D. Dissertation, 1974, Univ. of Denver, Denver, Colorado.

    Google Scholar 

  46. Meyers, M. A. Mater. Sci. Engr., 30 (1977), 99.

    Article  Google Scholar 

  47. Murr, L. E., and Foltz, J. V., J. Appl. Phys., 40 (1969), 3796.

    Article  ADS  Google Scholar 

  48. Delaey, L., Zeitschriff Metallk., 63 (1972), 531.

    Google Scholar 

  49. Zackay, V. F., Mater. Sci. Engr., 25 (1976), 247.

    Article  Google Scholar 

  50. Meyers, M. A., and Orava, R. N. In Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications, Chap. 45, Meyers, M. A., and Murr, L. E. (eds.), 1981, Plenum Press, New York.

    Chapter  Google Scholar 

  51. Orava, R. N. Mater. Sci. Engr., 11 (1973), 177.

    Article  Google Scholar 

  52. Meyers, M. A., and Orava, R. N. Met. Trans., 7A (1976), 179.

    Google Scholar 

  53. Greenhut, V. A., Chen, M. G., Banks, R., and Golaski, S. Long-range diffusion of vacancies and substitutional atoms during high-strain-rate deformation of aluminum alloys, Proc. ICM II, Boston, Mass., 1975.

    Google Scholar 

  54. Staudhammer, K. P. and Murr, L. E. Mater. Sci. Engr., 44 (1980), 97.

    Article  Google Scholar 

  55. Staudhammer, K. P., Frantz, C. E., Hecker, S. S., and Murr, L. E. In Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications, Chap. 7, Meyers, M. A. and Murr, L. E. (eds.), 1981, Plenum Press, New York.

    Google Scholar 

  56. Olson, G. B., and Cohen, M. J. Less Common Metals, 28 (1972), 107.

    Article  Google Scholar 

  57. Kazmi, B., and Murr, L. E. In Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications, Chap. 41, Meyers, M. A., and Murr, L. E. (eds.), 1981, Plenum Press, New York.

    Google Scholar 

  58. Staudhammer, K. P. Effect of Shock Stress Amphtude, Shock Stress Duration, and Prior Deformation on the Residual Microstructure of Explosively Deformed Stainless Steels, Ph.D. Dissertation, 1975, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801.

    Google Scholar 

  59. Meyers, M. A. Met. Trans., 8A (1977), 1581.

    Google Scholar 

  60. Mcelroy, R. J., and Szkopiak, F. C. Intl. Metall Reviews, 17 (1972), 174.

    Google Scholar 

  61. Hsu, K. C., M.Sc. Thesis, 1981, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801.

    Google Scholar 

  62. Longo, W. P., and Reed-Hill, R. E. Metallography, 4 (1974), 181.

    Article  Google Scholar 

  63. Kuhlmann-Wilsdorf, D., and Laird, C. Mater. Sci. Eng., 27 (1977), 137.

    Article  Google Scholar 

  64. Duvall, G. E., and Graham, R. A. Reviews of Modern Phys., 49 (1977) 523.

    Article  ADS  Google Scholar 

  65. Barkers, L., and Hollenbach, R. E. JAP, 45 (1974), 4872.

    ADS  Google Scholar 

  66. Zukas, E. G. Metals Eng. Quart., 6 (1966), 1, May.

    Google Scholar 

  67. Dieter, G. E. In Response of Metals to High Velocity Deformation, Shewmon, P. G., and Zackay, V. F., (eds.) Interscience, New York, 1961, p. 419.

    Google Scholar 

  68. Stone, G. A., Orava, R. N., Gray, G. T. and Pelton, A. R. An Investigation of the Influence of Shock-Wave Profile on the Mechanical and Thermal Responses of Polycrystalline Iron, U.S. Army Research Office Final Report, Grant No. DAAG29–76-G-0180, September 1978, Report No. SMT-1–78.

    Google Scholar 

  69. Meyers, M. A., Sarzeto, C. and Hsu, C. Y. Met. Trans., 11A (1980), 1737.

    Google Scholar 

  70. Meyers, M. A., Gupta, B. B., and Murr, L. E. J. Metals, 33 (1981), 21.

    Google Scholar 

  71. Higgins, G. T. Met. Trans., 2 (1971), 1277.

    Google Scholar 

  72. Trueb, L. F. JAP, 40 (1967), 2976.

    ADS  Google Scholar 

  73. Dhere, A. G., Kestenbach, H.-J., and Meyers, M. a. Mater. Sci. Engr., 54 (1982) 113.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Applied Science Publishers Ltd

About this chapter

Cite this chapter

Murr, L.E., Meyers, M.A. (1983). Metallurgical Effects of Shock and Pressure Waves in Metals. In: Blazynski, T.Z. (eds) Explosive Welding, Forming and Compaction. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-9751-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-9751-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-9753-3

  • Online ISBN: 978-94-011-9751-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics