Skip to main content
Log in

Molecular dynamics simulation of the plastic behavior anisotropy of shock-compressed monocrystal nickel

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations were used to study the plastic behavior of monocrystalline nickel under shock compression along the [100] and [110] orientations. The shock Hugoniot relation, local stress curve, and process of microstructure development were determined. Results showed the apparent anisotropic behavior of monocrystalline nickel under shock compression. The separation of elastic and plastic waves was also obvious. Plastic deformation was more severely altered along the [110] direction than the [100] direction. The main microstructure phase transformed from face-centered cubic to body-centered cubic and generated a large-scale and low-density stacking fault along the family of { 111 } crystal planes under shock compression along the [100] direction. By contrast, the main mechanism of plastic deformation in the [110] direction was the nucleation of the hexagonal, close-packed phase, which generated a high density of stacking faults along the [110] and [1̅10] directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.M. Wang, E.M. Bringa, J.M. McNaney, Appl. Phys. Lett. 88, 061917 (2006)

    Article  ADS  Google Scholar 

  2. Y.H. Li, L.C. Zhou, W.F. He, G.Y. He, X.D. Wang, X.F. Nie, B. Wang, S.H. Luo, Y.Q. Li, Sci. Technol. Adv. Mater. 14, 1574 (2013)

    Google Scholar 

  3. Y. Chang, S. Sergey, L. Dong, J.C. Gary, Philos. Mag. 92, 1369 (2012)

    Article  Google Scholar 

  4. J.Z. Lu, K.Y. Luo, Y.K. Zhang, Acta Mater. 58, 5354 (2010)

    Article  Google Scholar 

  5. M.A. Meyers, Dynamic Behavior of Materials (Wiley, New York, 1994)

  6. C.S. Smith, Trans. Amer. Instit. Mining & Metallurgical Eng. 212, 574 (1958)

    Google Scholar 

  7. E. Hornbogen, Acta Metall. 10, 525 (1962)

    Article  Google Scholar 

  8. M. Bringa, A. Caro, Y.M. Wang, Science 309, 1838 (2005)

    Article  ADS  Google Scholar 

  9. T.C. Germann, B.L. Holian, P.S. Lomdahl, Phys. Rev. Lett. 84, 5351 (2000)

    Article  ADS  Google Scholar 

  10. T.C. Germann, B.L. Holian, P.S. Lomdahl, Metall. Mater. Trans. A 35, 2609 (2004)

    Article  Google Scholar 

  11. O. Kum, J. Appl. Phys. 93, 3239 (2003)

    Article  ADS  Google Scholar 

  12. H.N. Jarmakani, E.M. Bringa, P. Erhart, Acta Mater. 56, 5584 (2008)

    Article  Google Scholar 

  13. S.J. Plimpton, Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  14. Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Phys. Rev. B 63, 224106 (2001)

    Article  ADS  Google Scholar 

  15. X.L. Deng, W.J. Zhu, Z.F. Song, Acta Phys. Sin. 58, 4772 (2009)

    Google Scholar 

  16. K.G. Chen, W.J. Zhu, Acta Phys. Sin. 59, 471 (2010)

    Google Scholar 

  17. B.L. Holian, Phys. Rev. A 37, 2562 (1988)

    Article  ADS  Google Scholar 

  18. E.M. Bringa, J.U. Cazamias, P. Erhart, J. Stolken, N. Tanushev, B.D. Wirth, J. Appl. Phys. 96, 3793 (2004)

    Article  ADS  Google Scholar 

  19. M.H. Rice, R.G. McQueen, J.M. Walsh, Solid State Phys. 6, 1 (1958)

    Google Scholar 

  20. R.G. Mcqueen, S.P. Marsh, J. Appl. Phys. 31, 1253 (1960)

    Article  ADS  Google Scholar 

  21. D. Li, Sci. China Phys. Mech. 57, 2177 (2014)

    Article  Google Scholar 

  22. X.Y. Zhang, X.L. Wu, Q. Liu, R.L. Zuo, A.W. Zhu, P. Jiang, Q.M. Wei, Appl. Phys. Lett. 93, 031901 (2008)

    Article  ADS  Google Scholar 

  23. K. Wang, S.F. Xiao, H.Q. Deng, W.J. Zhu, W.Y. Hu, Int. J. Plasticity 8, 180 (2014)

    Article  Google Scholar 

  24. M.A. Meyers, B.A. Remington, B. Maddox, E.M. Bringa, J. Min. Met. Mat. Soc. 62, 24 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Zhou Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YZ., Zhou, LC., He, WF. et al. Molecular dynamics simulation of the plastic behavior anisotropy of shock-compressed monocrystal nickel. Eur. Phys. J. B 90, 16 (2017). https://doi.org/10.1140/epjb/e2016-70388-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70388-7

Keywords

Navigation