Skip to main content
Log in

Development and validation of a numerical model of the swine head subjected to open-field blasts

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A finite element model of the head of a 55-kg Yucatan pig was developed to calculate the incident pressure and corresponding intracranial pressure due to the explosion of 8 lb (3.63 kg) of C4 at three different distances. The results from the model were validated by comparing findings with experimentally obtained data from five pigs at three different blast overpressure levels: low (150 kPa), medium (275 kPa), and high (400 kPa). The peak values of intracranial pressures from numerical model at different locations of the brain such as the frontal, central, left temporal, right temporal, parietal, and occipital regions were compared with experimental values. The model was able to predict the peak pressure with reasonable percentage differences. The differences for peak incident and intracranial pressure values between the simulation results and the experimental values were found to be less than 2.2 and 29.3%, respectively, at all locations other than the frontal region. Additionally, a series of parametric studies shows that the intracranial pressure was very sensitive to sensor locations, the presence of air bubbles, and reflections experienced during the experiments. Further efforts will be undertaken to correlate the different biomechanical response parameters, such as the intracranial pressure gradient, stress, and strain results obtained from the validated model with injured brain locations once the histology data become available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Reproduced from Schmidt et al. [52]

Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Warden, D.L., French, L.M., Shupenko, L., Fargus, J., Riedy, G., Erickson, M.E., Jaffee, M.S., Moore, D.F.: Case report of a soldier with primary blast brain injury. Neuroimage 47, T152–T153 (2009). doi:10.1016/j.neuroimage.2009.01.060

    Article  Google Scholar 

  2. Ling, G., Bandak, F., Armonda, R., Grant, G., Ecklund, J.: Explosive blast neurotrauma. J. Neurotrauma 26(6), 815–825 (2009). doi:10.1089/neu.2007.0484

    Article  Google Scholar 

  3. Risling, M., Davidsson, J.: Experimental animal models for studies on the mechanisms of blast-induced neurotrauma. Front. Neurol. 3, 30 (2012). doi:10.3389/fneur.2012.00030

    Google Scholar 

  4. Cernak, I., Noble-Haeusslein, L.J.: Traumatic brain injury: An overview of pathobiology with emphasis on military populations. J. Cerebr. Blood Flow Metabol. 30(2), 255–266 (2010). doi:10.1038/jcbfm.2009.203

    Article  Google Scholar 

  5. DePalma, R.G., Burris, D.G., Champion, H.R., Hodgson, M.J.: Blast injuries. N. Engl. J. Med. 352(13), 1335–1342 (2005). doi:10.1056/nejmra042083

    Article  Google Scholar 

  6. Nakagawa, A., Manley, G.T., Gean, A.D., Ohtani, K., Armonda, R., Tsukamoto, A., Yamamoto, H., Takayama, K., Tominaga, T.: Mechanisms of primary blast-induced traumatic brain injury: Insights from shock-wave research. J. Neurotrauma 28(6), 1101–1119 (2011). doi:10.1089/neu.2010.1442

    Article  Google Scholar 

  7. Marjoux, D., Baumgartner, D., Deck, C., Willinger, R.: Head injury prediction capability of the HIC, HIP, SIMon and ULP criteria. Accid. Anal. Prevent. 40(3), 1135–1148 (2008). doi:10.1016/j.aap.2007.12.006

    Article  Google Scholar 

  8. Takhounts, E.G., Craig, M.J., Moorhouse, K., McFadden, J., Hasija, V.: Development of brain injury criteria (Br IC). Stapp Car Crash J. 57, 243 (2013)

    Google Scholar 

  9. Chafi, M., Karami, G., Ziejewski, M.: Biomechanical assessment of brain dynamic responses due to blast pressure waves. Ann. Biomed. Eng. 38(2), 490–504 (2010). doi:10.1007/s10439-009-9813-z

    Article  Google Scholar 

  10. White, C.S., Bowen, I.G., Richmond, D.R.: Biological tolerance to air blast and related biomedical criteria. Report No. CEX-65.4. Civil Effects Test Operations (AEC), Lovelace Foundation for Medical Education and Research, DTIC Document ADA384737 (1965)

  11. Richmond, D.R., Damon, E.G., Fletcher, E.R., Bowen, I.G., White, C.S.: The relationship between selected blast wave parameters and the response of mammals exposed to air blast. Ann. N. Y. Acad. Sci. 152(1), 103–121 (1968). doi:10.1111/j.1749-6632.1968.tb11970.x

    Article  Google Scholar 

  12. VandeVord, P.J., Leung, L.Y., Hardy, W., Mason, M., Yang, K.H., King, A.I.: Up-regulation of reactivity and survival genes in astrocytes after exposure to short duration overpressure. Neurosci. Lett. 434(3), 247–252 (2008). doi:10.1016/j.neulet.2008.01.056

    Article  Google Scholar 

  13. Rafaels, K., Dale Bass, C.R., Salzar, R.S., Panzer, M.B., Woods, W., Feldman, S., Cummings, T., Capehart, B.: Survival risk assessment for primary blast exposures to the head. J. Neurotrauma 28(11), 2319–2328 (2011). doi:10.1089/neu.2009.1207

    Article  Google Scholar 

  14. Leonardi, A.D.C., Keane, N.J., Bir, C.A., Ryan, A.G., Xu, L., VandeVord, P.J.: Head orientation affects the intracranial pressure response resulting from shock wave loading in the rat. J. Biomech. 45(15), 2595–2602 (2012). doi:10.1016/j.jbiomech.2012.08.024

    Article  Google Scholar 

  15. Yang, K.H., Mao, H., Wagner, C., Zhu, F., Chou, C.C., King, A.I.: Modeling of the brain for injury prevention. In: Neural Tissue Biomechanics, pp. 69–120. Springer, Berlin (2011). doi:10.1007/8415_2010_62

  16. Bogo, V., Hutton, R., Bruner, A.: The effects of airblast on discriminated avoidance behavior in rhesus monkeys. Technical Progress Rept. DASA 2659. Lovelace Foundation for Medical Education and Research, DTIC Document AD0742819 (1971)

  17. Jaffin, J.H., Mckinney, L., Kinney, R.C., Cunningham, J.A., Moritz, D.M., Kraimer, J.M., Graeber, G.M., Moe, J.B.: A laboratory model for studying blast overpressure injury. J. Trauma Acute Care Surg. 27(4), 349–356 (1987)

    Article  Google Scholar 

  18. Cernak, I., Savic, J., Stanimirovic, D., Djuricic, B., Mrsulja, B.: Mechanisms of pulmonary edema in sheep exposed to FAE charge. J. Trauma Injury Infect. Critical Care 6, 267–271 (1990)

    Google Scholar 

  19. Cernak, I., Radosevic, P., Malicevic, Z., Savic, J.: Experimental magnesium depletion in adult rabbits caused by blast overpressure. Magnes. Res. 8(3), 249–259 (1995)

    Google Scholar 

  20. Axelsson, H., Hjelmqvist, H., Medin, A., Persson, J.K., Suneson, A.: Physiological changes in pigs exposed to a blast wave from a detonating high-explosive charge. Mil. Med. 165(2), 119 (2000)

    Google Scholar 

  21. Bauman, R.A., Ling, G., Tong, L., Januszkiewicz, A., Agoston, D., Delanerolle, N., Kim, Y., Ritzel, D., Bell, R., Ecklund, J., Armonda, R., Bandak, F., Parks S.: An introductory characterization of a combat-casualty-care relevant swine model of closed head injury resulting from exposure to explosive blast. J. Neurotrauma 26(6), 841–860 (2009). doi:10.1089/neu.2008.0898

  22. Damon, E., Gaylord, C., Hicks, W., Yelverton, J., Richmond, D., White, C.: The effects of ambient pressure on tolerance of mammals to air blast. Technical Progress Rept. DASA 1852. Lovelace Foundation for Medical Education and Research, DTIC Document ADA382594 (1967)

  23. Voo, L., Kumaresan, S., Pintar, F.A., Yoganandan, N., Sances Jr., A.: Finite-element models of the human head. Med. Biol. Eng. Comput. 34(5), 375–381 (1996). doi:10.1007/BF02520009

    Article  Google Scholar 

  24. Yang, K.H., Hu, J., White, N.A., King, A.I.: Development of numerical models for injury biomechanics research: A review of 50 years of publications in the Stapp Car Crash Conference. Stapp Car Crash J. 50, 429 (2006)

    Google Scholar 

  25. Zhang, L., Makwana, R., Sharma, S.: Brain response to primary blast wave using validated finite element models of human head and advanced combat helmet. Front. Neurol. 4, 88 (2013). doi:10.3389/fneur.2013.00088

    Article  Google Scholar 

  26. Singh, D., Cronin, D.S., Haladuick, T.N.: Head and brain response to blast using sagittal and transverse finite element models. Int. J. Numer. Methods Biomed. Eng. 30(4), 470–489 (2014). doi:10.1002/cnm.2612

    Article  MathSciNet  Google Scholar 

  27. Moore, D.F., Jérusalem, A., Nyein, M., Noels, L., Jaffee, M.S., Radovitzky, R.A.: Computational biology—Modeling of primary blast effects on the central nervous system. Neuroimage 47, T10–T20 (2009). doi:10.1016/j.neuroimage.2009.02.019

    Article  Google Scholar 

  28. Taylor, P.A., Ford, C.C.: Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury. J. Biomech. Eng. 131(6), 061007 (2009). doi:10.1115/1.3118765

    Article  Google Scholar 

  29. Sundaramurthy, A., Alai, A., Ganpule, S., Holmberg, A., Plougonven, E., Chandra, N.: Blast-induced biomechanical loading of the rat: An experimental and anatomically accurate computational blast injury model. J. Neurotrauma 29(13), 2352–2364 (2012). doi:10.1089/neu.2012.2413

    Article  Google Scholar 

  30. Nahum, A.M., Smith, R., Ward, C.C.: Intracranial pressure dynamics during head impact. In: 21st Stapp Car Crash Conference, SAE Technical Paper No. 770922 (1977). doi:10.4271/770922

  31. Hardy, W.N., Foster, C.D., Mason, M.J., Yang, K.H., King, A.I., Tashman, S.: Investigation of head injury mechanisms using neutral density technology and high-speed biplanar x-ray. Stapp Car Crash J. 45, 337–368 (2001)

    Google Scholar 

  32. Zhu, F., Mao, H., Leonardi, A.D.C., Wagner, C., Chou, C., Jin, X., Bir, C., VandeVord, P., Yang, K.H., King, A.I.: Development of an FE model of the rat head subjected to air shock loading. Stapp Car Crash J. 54, 211 (2010)

    Google Scholar 

  33. Zhu, F., Skelton, P., Chou, C.C., Mao, H., Yang, K.H., King, A.I.: Biomechanical responses of a pig head under blast loading: a computational simulation. Int. J. Numer. Methods Biomed. Eng. 29(3), 392–407 (2013). doi:10.1002/cnm.2518

    Article  Google Scholar 

  34. Ganpule, S., Alai, A., Plougonven, E., Chandra, N.: Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches. Biomech. Model. Mechanobiol. 12(3), 511–531 (2013). doi:10.1007/s10237-012-0421-8

    Article  Google Scholar 

  35. Huang, Y.: Simulation of Blast on Porcine Head. (No. ARL-TR-7340). Army Research Lab Aberdeen Proving Ground Report No. ARL-TR-7340 (2015)

  36. Reneer, D.V., Hisel, R.D., Hoffman, J.M., Kryscio, R.J., Lusk, B.T., Geddes, J.W.: A multi-mode shock tube for investigation of blast-induced traumatic brain injury. J. Neurotrauma 28(1), 95–104 (2011). doi:10.1089/neu.2010.1513

    Article  Google Scholar 

  37. Sundaramurthy, A., Chandra, N.: A parametric approach to shape field-relevant blast wave profiles in compressed-gas-driven shock tube. Front. Neurol. 5, 253 (2014). doi:10.3389/fneur.2014.00253

    Article  Google Scholar 

  38. Chavko, M., Koller, W.A., Prusaczyk, W.K., McCarron, R.M.: Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain. J. Neurosci. Methods 159(2), 277–281 (2007). doi:10.1016/j.jneumeth.2006.07.018

    Article  Google Scholar 

  39. Sawyer, T.W., Wang, Y., Ritzel, D.V., Josey, T., Villanueva, M., Shei, Y., Nelson, P., Hennes, G., Weiss, T., Vair, C., Fan, C., Barnes, J.: High-fidelity simulation of primary blast: Direct effects on the head. J. Neurotrauma 33(13), 1181–1193 (2015). doi:10.1089/neu.2015.3914

  40. Bir, C.: Measuring blast-related intracranial pressure within the human head. Grant number W81XWH-09-1-0498 for U.S. Army Medical Research and Materiel Command, DTIC Document ADA547306 (2011)

  41. Lockhart, P., Cronin, D., Williams, K., Ouellet, S.: Investigation of head response to blast loading. J. Trauma Acute Care Surg. 70(2), E29–E36 (2011). doi:10.1097/TA.0b013e3181de3f4b

    Article  Google Scholar 

  42. De Rosa, M., Fama, F., Palleschi, V., Singh, D., Vaselli, M.: Derivation of the critical angle for Mach reflection for strong shock waves. Phys. Rev. A 45(8), 6130 (1992). doi:10.1103/PhysRevA.45.6130

    Article  Google Scholar 

  43. Feng, K., Zhang, L., Jin, X., Chen, C., Kallakuri, S., Saif, T., Cavanaugh, J., King, A.: Biomechanical responses of the brain in swine subject to free-field blasts. Front. Neurol. 7: 179 (2016). doi:10.3389/fneur.2016.00179

  44. Shivanna, K.H., Tadepalli, S.C., Grosland, N.M.: Feature-based multiblock finite element mesh generation. Comput. Aided Des. 42(12), 1108–1116 (2010). doi:10.1016/j.cad.2010.07.005

    Article  Google Scholar 

  45. Arbogast, K., Prange, M., Meaney, D., Margulies, S.: Properties of cerebral gray and white matter undergoing large deformation. In: 7th Injury Prevention Through Biomechanics, Centers for Disease Control, Detroit, Michigan, USA, pp. 33–39 (1997)

  46. Grujicic, M., Bell, W., Pandurangan, B., Glomski, P.: Fluid/structure interaction computational investigation of blast-wave mitigation efficacy of the advanced combat helmet. J. Mater. Eng. Perform. 20(6), 877–893 (2011). doi:10.1007/s11665-010-9724-z

    Article  Google Scholar 

  47. Panzer, M.B., Myers, B.S., Capehart, B.P., Bass, C.R.: Development of a finite element model for blast brain injury and the effects of CSF cavitation. Ann. Biomed. Eng. 40(7), 1530–1544 (2012). doi:10.1007/s10439-012-0519-2

    Article  Google Scholar 

  48. Slavik, T.P.: A coupling of empirical explosive blast loads to ALE air domains in LS-DYNA\(^{\textregistered }\). In: IOP Conference Series: Materials Science and Engineering 012146 (2010). doi:10.1088/1757-899X/10/1/012146

  49. Tabatabaei, Z.S., Volz, J.S.: A comparison between three different blast methods in LS-DYNA: LBE, MM-ALE, Coupling of LBE and MM-ALE. In: Proceedings of 12th International LS-DYNA Users Conference 2012

  50. Kalra, A., Zhu, F., Chen, C., Yang, K.H.: A computational modeling of the biomechanical response of pig head under blast loading. In: Proceedings of 17th U.S. National Congress on Theoretical and Applied Mechanics 2014, p. 808. Michigan State University

  51. Jin, X., Zhu, F., Mao, H., Shen, M., Yang, K.H.: A comprehensive experimental study on material properties of human brain tissue. J. Biomech. 46(16), 2795–2801 (2013). doi:10.1016/j.jbiomech.2013.09.001

    Article  Google Scholar 

  52. Schmidt, V.: Comparative anatomy of the pig brain: an integrative magnetic resonance imaging (MRI) study of the porcine brain with special emphasis on the external morphology of the cerebral cortex. Dissertation, Justus-Liebig-Universität Gießen (2015)

  53. Cernak, I., Merkle, A.C., Koliatsos, V.E., Bilik, J.M., Luong, Q.T., Mahota, T.M., Xu, L., Slack, N., Windle, D., Ahmed, F.A.: The pathobiology of blast injuries and blast-induced neurotrauma as identified using a new experimental model of injury in mice. Neurobiol. Dis. 41(2), 538–551 (2011). doi:10.1016/j.nbd.2010.10.025

    Article  Google Scholar 

  54. King, A.I., Yang, K.H., Zhang, L., Hardy, W., Viano, D.C.: Is head injury caused by linear or angular acceleration. In: Proceedings of IRCOBI Conference 2003, pp. 1–12

  55. Zhang, L., Yang, K.H., King, A.I.: A proposed injury threshold for mild traumatic brain injury. J. Biomech. Eng. 126(2), 226–236 (2004). doi:10.1115/1.1691446

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research and Materiel Command of the US Army (Award No. W81XWH-12-2-0038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kalra.

Additional information

Communicated by O. Petel and S. Ouellet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalra, A., Zhu, F., Feng, K. et al. Development and validation of a numerical model of the swine head subjected to open-field blasts. Shock Waves 27, 947–964 (2017). https://doi.org/10.1007/s00193-017-0760-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-017-0760-6

Keywords

Navigation