Skip to main content

Advertisement

Log in

Age and/or postmenopausal status as risk factors for pelvic organ prolapse development: systematic review with meta-analysis

  • Review Article
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Introduction and hypothesis

Age is named as a risk factor for pelvic organ prolapse (POP), despite not being the primary outcome for many observational studies. Postmenopausal status is another associated factor but has many confounders. We aimed to systematically review the role of age and/or postmenopausal status in POP development.

Methods

Systematic review addressing age and hormones, more specifically by postmenopausal status, from inception to March 2020 in four databases (PubMed, Embase, WOS, Cochrane Library). Quality of evidence was classified by the ROBINS-I classification for non-randomized studies. Experimental studies, animal studies, studies linking age with recurrent POP and case series were excluded. Effect estimates were collected from adjusted odds ratio plus 95% confidence intervals. Significance level was 5%. A discussion exploring mechanistic factors was also included.

Results

Nineteen studies (11 cross sectional, 6 cohort and 2 case control) were included for quantitative analysis. Only two studies presented a low overall risk of bias for age; most of the domains were of moderate risk. Every additional year was responsible for a 10% increase in the risk to develop POP (OR = 1.102 [1.021–1.190]; i2 = 80%, random analysis, p = 0.012). This trend was confirmed when age was dichotomized into a cutoff of 35 (p = 0.035) and 50 (p < 0.001) years. Although an increase in the risk for POP was noted in postmenopausal women, this did not reach statistical significance (OR = 2.080 [0.927–4.668], i2 = 0%, p = 0.076).

Conclusion

Age is a risk factor for POP; postmenopausal status was not statistically associated with POP, prompting the need for further studies addressing this factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. DuBeau CE. Aging and the lower urogenital system. Principles Gender-Spec Med Elsevier. 2010:432–48.

  2. Nygaard I, Barber MD, Burgio KL, et al. Prevalence of symptomatic pelvic floor disorders in US women. Jama-J Am Med Assoc. 2008;300(11):1311–6. https://doi.org/10.1001/jama.300.11.1311.

    Article  CAS  Google Scholar 

  3. Towers GD. The pathophysiology of pelvic organ prolapse. Female Pelv Med Reconstr Surg. 2004;10(3):109–22.

    Google Scholar 

  4. Wasenda EJ, Atan IK, Subramaniam N, Dietz HP. Pelvic organ prolapse: does hormone therapy use matter? Menopause-J North Am Menopause Soc. 2017;24(10):1185–9. https://doi.org/10.1097/GME.0000000000000898.

    Article  Google Scholar 

  5. Fante JF, Machado HDC, Juliato CRT, Benetti-Pinto CL, Brito LGO. Pelvic floor disorders in women with premature ovarian insufficiency: a cross-sectional study. Menopause. 2020;27(4):450–8. https://doi.org/10.1097/gme.0000000000001523.

    Article  PubMed  Google Scholar 

  6. National Collaborating Centre for Women's and Children's H. National Institute for Health and Care Excellence: Clinical Guidelines. Menopause: Full Guideline. National Institute for Health and Care Excellence (UK) Copyright © 2015 National Collaborating Centre for Women's and Children's Health.; 2015.

  7. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. Bmj. 2016;355:i4919. https://doi.org/10.1136/bmj.i4919.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Friedman T, Eslick GD, Dietz HP. Risk factors for prolapse recurrence: systematic review and meta-analysis. Int Urogynecol J. 2018;29(1):13–21. https://doi.org/10.1007/s00192-017-3475-4.

    Article  PubMed  Google Scholar 

  9. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Bmj. 2003;327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yuk JS, Lee JH, Hur JY, Shin JH. The prevalence and treatment pattern of clinically diagnosed pelvic organ prolapse: a Korean National Health Insurance Database-based cross-sectional study 2009-2015. Sci Rep. 2018;8(1):1334. https://doi.org/10.1038/s41598-018-19692-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Quiroz LH, White DE, Juarez D, Shobeiri SA. Age effects on pelvic floor symptoms in a cohort of nulliparous patients. Female Pelvic Med Reconstr Surg. 2012;18(6):325–8. https://doi.org/10.1097/SPV.0b013e3182720255.

    Article  PubMed  Google Scholar 

  12. Wusu-Ansah OK, Opare-Addo HS. Pelvic organ prolapse in rural Ghana. Int J Gynaecol Obstet. 2008;103(2):121–4. https://doi.org/10.1016/j.ijgo.2008.06.014.

    Article  PubMed  Google Scholar 

  13. Slieker-ten Hove MC, Pool-Goudzwaard AL, Eijkemans MJ, Steegers-Theunissen RP, Burger CW, Vierhout ME. Prediction model and prognostic index to estimate clinically relevant pelvic organ prolapse in a general female population. Int Urogynecol J Pelvic Floor Dysfunct. 2009;20(9):1013–21. https://doi.org/10.1007/s00192-009-0903-0.

    Article  PubMed  Google Scholar 

  14. Akter F, Gartoulla P, Oldroyd J, Islam RM. Prevalence of, and risk factors for, symptomatic pelvic organ prolapse in rural Bangladesh: a cross-sectional survey study. Int Urogynecol J. 2016;27(11):1753–9. https://doi.org/10.1007/s00192-016-3038-0.

    Article  PubMed  Google Scholar 

  15. Li Z, Xu T, Gong J, Liu Q, Zhu L. An epidemiologic study of pelvic organ prolapse in rural Chinese women: a population-based sample in China. Int Urogynecol J. 2019;30(11):1925–32. https://doi.org/10.1007/s00192-018-03859-9.

    Article  PubMed  Google Scholar 

  16. Swift S, Woodman P, O'Boyle A, et al. Pelvic organ support study (POSST): the distribution, clinical definition, and epidemiologic condition of pelvic organ support defects. Am J Obstet Gynecol. 2005;192(3):795–806. https://doi.org/10.1016/j.ajog.2004.10.602.

    Article  PubMed  Google Scholar 

  17. Wusu-Ansah OK, Opare-Addo HS. Pelvic organ prolapse in rural Ghana. Int J Gynecol Obstet. 2008;103(2):121–4.

    Google Scholar 

  18. Olsen AL, Smith VJ, Bergstrom JO, Colling JC, Clark AL. Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence. Obstet Gynecol. 1997;89(4):501–6.

    CAS  PubMed  Google Scholar 

  19. Fialkow MF, Newton KM, Lentz GM, Weiss NS. Lifetime risk of surgical management for pelvic organ prolapse or urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct. 2008;19(3):437–40. https://doi.org/10.1007/s00192-007-0459-9.

    Article  CAS  PubMed  Google Scholar 

  20. Nygaard I, Barber MD, Burgio KL, et al. Prevalence of symptomatic pelvic floor disorders in US women. Jama. 2008;300(11):1311–6. https://doi.org/10.1001/jama.300.11.1311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Akervall S, Al-Mukhtar Othman J, Molin M, Gyhagen M. Symptomatic pelvic organ prolapse in middle-aged women - a national matched cohort study on the influence of childbirth. Am J Obstet Gynecol. 2019. https://doi.org/10.1016/j.ajog.2019.10.007

  22. Asresie A, Admassu E, Setegn T. Determinants of pelvic organ prolapse among gynecologic patients in Bahir Dar, north West Ethiopia: a case-control study. Int J Women's Health. 2016;8:713–9. https://doi.org/10.2147/ijwh.s122459.

    Article  Google Scholar 

  23. Gyhagen M, Al-Mukhtar Othman J, Åkervall S, Nilsson I, Milsom I. The symptom of vaginal bulging in nulliparous women aged 25-64 years: a national cohort study. Int Urogynecol J. 2019;30(4):639–47. https://doi.org/10.1007/s00192-018-3684-5.

    Article  PubMed  Google Scholar 

  24. Henok A. Prevalence and factors associated with pelvic organ prolapse among pedestrian Back-loading women in bench Maji zone. Ethiop J Health Sci. 2017;27(3):263–72. https://doi.org/10.4314/ejhs.v27i3.8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Løwenstein E, Ottesen B, Gimbel H. Incidence and lifetime risk of pelvic organ prolapse surgery in Denmark from 1977 to 2009. Int Urogynecol J. 2015;26(1):49–55. https://doi.org/10.1007/s00192-014-2413-y.

    Article  PubMed  Google Scholar 

  26. Masenga GG, Shayo BC, Rasch V. Prevalence and risk factors for pelvic organ prolapse in Kilimanjaro, Tanzania: a population based study in Tanzanian rural community. PLoS One. 2018;13(4):e0195910. https://doi.org/10.1371/journal.pone.0195910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Risk factors for genital prolapse in non-hysterectomized women around menopause. Results from a large cross-sectional study in menopausal clinics in Italy. Progetto Menopausa Italia Study Group. Eur J Obstet Gynecol Reprod Biol. 2000;93(2):135-40.

  28. Swift SE, Pound T, Dias JK. Case-control study of etiologic factors in the development of severe pelvic organ prolapse. Int Urogynecol J Pelvic Floor Dysfunct. 2001;12(3):187–92. https://doi.org/10.1007/s001920170062.

    Article  CAS  PubMed  Google Scholar 

  29. Tegerstedt G, Maehle-Schmidt M, Nyrén O, Hammarström M. Prevalence of symptomatic pelvic organ prolapse in a Swedish population. Int Urogynecol J Pelvic Floor Dysfunct. 2005;16(6):497–503. https://doi.org/10.1007/s00192-005-1326-1.

    Article  PubMed  Google Scholar 

  30. Vergeldt TF, Weemhoff M, IntHout J, Kluivers KB. Risk factors for pelvic organ prolapse and its recurrence: a systematic review. Int Urogynecol J. 2015;26(11):1559–73. https://doi.org/10.1007/s00192-015-2695-8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ismail SI, Bain C, Hagen S. Oestrogens for treatment or prevention of pelvic organ prolapse in postmenopausal women. Cochrane Database Syst Rev. 2010;(9):Cd007063. https://doi.org/10.1002/14651858.CD007063.pub2

  32. Gedefaw G, Demis A. Burden of pelvic organ prolapse in Ethiopia: a systematic review and meta-analysis. BMC Womens Health. 2020;20(1):166. https://doi.org/10.1186/s12905-020-01039-w.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gyhagen M, Al-Mukhtar Othman J, Akervall S, Nilsson I, Milsom I. The symptom of vaginal bulging in nulliparous women aged 25-64 years: a national cohort study. Int Urogynecol J. 2019;30(4):639–47. https://doi.org/10.1007/s00192-018-3684-5.

    Article  PubMed  Google Scholar 

  34. Lo TS, Jaili S, Uy-Patrimonio MC, Karim NB, Ibrahim R. Transvaginal management of severe pelvic organ prolapse in nulliparous women. J Obstet Gynaecol Res. 2017;43(3):543–50. https://doi.org/10.1111/jog.13234.

    Article  PubMed  Google Scholar 

  35. Norton P, Baker J, Sharp H, Warenski J. Genitourinary prolapse: relationship with joint mobility. Neurourol Urodynam. 1990;9:321–2.

    CAS  Google Scholar 

  36. Wan L, Liu X. Delayed-onset advanced pelvic organ prolapse after spinal cord injury in a young, nulliparous woman. Int Urogynecol J. 2016;27(5):825–7.

    PubMed  Google Scholar 

  37. Dietz HP, Clarke B. Prevalence of rectocele in young nulliparous women. Aust N Z J Obstet Gynaecol. 2005;45(5):391–4.

    PubMed  Google Scholar 

  38. Trowbridge ER, Wei JT, Fenner DE, Ashton-Miller JA, Delancey JO. Effects of aging on lower urinary tract and pelvic floor function in nulliparous women. Obstet Gynecol. 2007;109(3):715–20. https://doi.org/10.1097/01.aog.0000257074.98122.69.

    Article  PubMed  Google Scholar 

  39. Jundt K, Kiening M, Fischer P, et al. Is the histomorphological concept of the female pelvic floor and its changes due to age and vaginal delivery correct? Neurourol Urodyn. 2005;24(1):44–50. https://doi.org/10.1002/nau.20080.

    Article  PubMed  Google Scholar 

  40. Swenson CW, Masteling M, DeLancey JO, Nandikanti L, Schmidt P, Chen L. Aging effects on pelvic floor support: a pilot study comparing young versus older nulliparous women. Int Urogynecol J. 2019. https://doi.org/10.1007/s00192-019-04063-z

  41. Raizada V, Mittal RK. Pelvic floor anatomy and applied physiology. Gastroenterol Clin N Am. 2008;37(3):493–509, vii. https://doi.org/10.1016/j.gtc.2008.06.003.

    Article  Google Scholar 

  42. Dumoulin C, Pazzoto Cacciari L, Mercier J. Keeping the pelvic floor healthy. Climacteric. 2019;22(3):257–62. https://doi.org/10.1080/13697137.2018.1552934.

    Article  CAS  PubMed  Google Scholar 

  43. Smith P, Heimer G, Norgren A, Ulmsten U. Steroid hormone receptors in pelvic muscles and ligaments in women. Gynecol Obstet Investig. 1990;30(1):27–30. https://doi.org/10.1159/000293207.

    Article  CAS  Google Scholar 

  44. Smith P, Heimer G, Norgren A, Ulmsten U. Localization of steroid hormone receptors in the pelvic muscles. Eur J Obstet Gynecol Reprod Biol. 1993;50(1):83–5. https://doi.org/10.1016/0028-2243(93)90169-d.

    Article  CAS  PubMed  Google Scholar 

  45. Rizk DE, Al-Marzouqi AH, Hassan HA, Al-Kedrah SS, Fahim MA. Estrogen and ghrelin decrease cytoplasmic expression of p27kip1, a cellular marker of ageing, in the striated anal sphincter and levator muscle of ovariectomized rats. Int Urogynecol J Pelvic Floor Dysfunct. 2007;18(4):413–8. https://doi.org/10.1007/s00192-006-0159-x.

    Article  PubMed  Google Scholar 

  46. Lang JH, Zhu L, Sun ZJ, Chen J. Estrogen levels and estrogen receptors in patients with stress urinary incontinence and pelvic organ prolapse. Int J Gynaecol Obstet. 2003;80(1):35–9. https://doi.org/10.1016/s0020-7292(02)00232-1.

    Article  CAS  PubMed  Google Scholar 

  47. Delancey JO. Fascial and muscular abnormalities in women with urethral hypermobility and anterior vaginal wall prolapse. Am J Obstet Gynecol. 2002;187(1):93–8. https://doi.org/10.1067/mob.2002.125733.

    Article  PubMed  Google Scholar 

  48. Whiteside JL, Barber MD, Paraiso MF, Walters MD. Vaginal rugae: measurement and significance. Climacteric. 2005;8(1):71–5. https://doi.org/10.1080/13697130500042490.

    Article  CAS  PubMed  Google Scholar 

  49. Bodner-Adler B, Bodner K, Schneidinger C, et al. Pelvic organ prolapse and endogenous circulating sex steroids in postmenopausal women: a case control-study. Eur J Obstet Gynecol Reprod Biol. 2017;210:177–81. https://doi.org/10.1016/j.ejogrb.2016.12.027.

    Article  CAS  PubMed  Google Scholar 

  50. Moalli PA, Talarico LC, Sung VW, et al. Impact of menopause on collagen subtypes in the arcus tendineous fasciae pelvis. Am J Obstet Gynecol. 2004;190(3):620–7. https://doi.org/10.1016/j.ajog.2003.08.040.

    Article  CAS  PubMed  Google Scholar 

  51. Moalli PA, Shand SH, Zyczynski HM, Gordy SC, Meyn LA. Remodeling of vaginal connective tissue in patients with prolapse. Obstet Gynecol. 2005;106(5 Pt 1):953–63. https://doi.org/10.1097/01.AOG.0000182584.15087.dd.

    Article  PubMed  Google Scholar 

  52. Bales G, Chung D, Ballert K. Pelvic organ prolapse in older adults. Geriatric Urology Springer. 2014:181–206.

  53. Wasenda EJ, Kamisan Atan I, Subramaniam N, Dietz HP. Pelvic organ prolapse: does hormone therapy use matter? Menopause. 2017;24(10):1185–9. https://doi.org/10.1097/gme.0000000000000898.

    Article  PubMed  Google Scholar 

  54. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.

    PubMed  PubMed Central  Google Scholar 

  55. Kirkwood TB. Understanding the odd science of aging. Cell. 2005;120(4):437–47.

    CAS  PubMed  Google Scholar 

  56. Gavin A-C, Aloy P, Grandi P, et al. Proteome survey reveals modularity of the yeast cell machinery. Nature. 2006;440(7084):631–6.

    CAS  PubMed  Google Scholar 

  57. Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science. 2008;319(5865):916–9.

    CAS  PubMed  Google Scholar 

  58. Vulic M, Strinic T, Tomic S, Capkun V, Jakus IA, Ivica S. Difference in expression of collagen type I and matrix metalloproteinase-1 in uterosacral ligaments of women with and without pelvic organ prolapse. Eur J Obstet Gynecol Reproduct Biol. 2011;155(2):225–8.

    CAS  Google Scholar 

  59. Qiu J, Qin M, Fan B, Chen X. Klotho protein reduced the expression of matrix Metalloproteinase-1 (MMP-1) and matrix Metalloproteinase-3 (MMP-3) in fibroblasts from patients with pelvic organ prolapse (POP) by Down-regulating the phosphorylation of ERK1/2. Med Sci Monitor: Intl Med J Exp Clin Res. 2019;25:3815.

    CAS  Google Scholar 

  60. Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45–51.

    CAS  PubMed  Google Scholar 

  61. Franceschi C, Bonafè M, Valensin S, et al. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908(1):244–54.

    CAS  PubMed  Google Scholar 

  62. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol Ser A: Biomed Sci Med Sci. 2014;69(Suppl_1):S4–9.

    Google Scholar 

  63. Narita M, Nuñez S, Heard E, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 2003;113(6):703–16.

    CAS  PubMed  Google Scholar 

  64. Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci. 1995;92(20):9363–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Takahashi A, Ohtani N, Yamakoshi K, et al. Mitogenic signalling and the p16 INK4a–Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol. 2006;8(11):1291–7.

    CAS  PubMed  Google Scholar 

  66. Freund A, Orjalo AV, Desprez P-Y, Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med. 2010;16(5):238–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Salvioli S, Monti D, Lanzarini C, et al. Immune system, cell senescence, aging and longevity-inflamm-aging reappraised. Curr Pharm Des. 2013;19(9):1675–9.

    CAS  PubMed  Google Scholar 

  68. Huang L, Zhao Z, Wen J, Ling W, Miao Y, Wu J. Cellular senescence: a pathogenic mechanism of pelvic organ prolapse. Mol Med Rep. 2020;22(3):2155–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kim EJ, Chung N, Park SH, et al. Involvement of oxidative stress and mitochondrial apoptosis in the pathogenesis of pelvic organ prolapse. J Urol. 2013;189(2):588–94.

    CAS  PubMed  Google Scholar 

  70. Li B, Hong L, Min J, Wu D, Hu M, Guo W. The expression of glutathione peroxidase-1 and the anabolism of collagen regulation pathway transforming growth factor-beta1-connective tissue growth factor in women with uterine prolapse and the clinic significance. Clin Exp Obstet Gynecol. 2013;40(4):586–90.

    CAS  PubMed  Google Scholar 

  71. Belayneh T, Gebeyehu A, Adefris M, Rortveit G, Awoke T. Pelvic organ prolapse in Northwest Ethiopia: a population-based study. Int Urogynecol J. 2019:1–9.

  72. Min J, Li B, Liu C, et al. Extracellular matrix metabolism disorder induced by mechanical strain on human parametrial ligament fibroblasts. Mol Med Rep. 2017;15(5):3278–84.

    CAS  PubMed  Google Scholar 

  73. Kufaishi H, Alarab M, Drutz H, Lye S, Shynlova O. Static mechanical loading influences the expression of extracellular matrix and cell adhesion proteins in vaginal cells derived from premenopausal women with severe pelvic organ prolapse. Reprod Sci. 2016;23(8):978–92.

    CAS  PubMed  Google Scholar 

  74. Zhang Q, Liu C, Hong S, et al. Excess mechanical stress and hydrogen peroxide remodel extracellular matrix of cultured human uterosacral ligament fibroblasts by disturbing the balance of MMPs/TIMPs via the regulation of TGF-β1 signaling pathway. Mol Med Rep. 2017;15(1):423–30.

    CAS  PubMed  Google Scholar 

  75. Usta A, Guzin K, Kanter M, Ozgül M, Usta CS. Expression of matrix metalloproteinase-1 in round ligament and uterosacral ligament tissue from women with pelvic organ prolapse. J Mol Histol. 2014;45(3):275–81.

    CAS  PubMed  Google Scholar 

  76. Li BS, Guo WJ, Hong L, et al. Role of mechanical strain-activated PI3K/Akt signaling pathway in pelvic organ prolapse. Mol Med Rep. 2016;14(1):243–53.

    PubMed  PubMed Central  Google Scholar 

  77. Kawabata H, Katsura T, Kondo E, et al. Stress deprivation from the patellar tendon induces apoptosis of fibroblasts in vivo with activation of mitogen-activated protein kinases. J Biomech. 2009;42(15):2611–5.

    PubMed  Google Scholar 

  78. Fernando R, Drescher C, Nowotny K, Grune T, Castro JP. Impaired proteostasis during skeletal muscle aging. Free Radic Biol Med. 2019;132:58–66.

    CAS  PubMed  Google Scholar 

  79. Van Kan GA. Epidemiology and consequences of sarcopenia. JNHA-J Nutri Health Aging. 2009;13(8):708–12.

    Google Scholar 

  80. Larsson L, Degens H, Li M, et al. Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev. 2019;99(1):427–511.

    PubMed  Google Scholar 

  81. Alnaqeeb M, Al Zaid N, Goldspink G. Connective tissue changes and physical properties of developing and ageing skeletal muscle. J Anat. 1984;139(Pt 4):677.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Prado LG, Makarenko I, Andresen C, Krüger M, Opitz CA, Linke WA. Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles. J Gen Physiol. 2005;126(5):461–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Alperin M, Cook M, Tuttle LJ, Esparza MC, Lieber RL. Impact of vaginal parity and aging on the architectural design of pelvic floor muscles. Am J Obstet Gynecol. 2016;215(3):312. e1–9.

    Google Scholar 

  84. Cook MS, Bou-Malham L, Esparza MC, Alperin M. Age-related alterations in female obturator internus muscle. Int Urogynecol J. 2017;28(5):729–34.

    PubMed  Google Scholar 

  85. Fulop T, Larbi A, Kotb R, de Angelis F, Pawelec G. Aging, immunity, and cancer. Discov Med. 2011;11(61):537–50.

    PubMed  Google Scholar 

  86. Agarwal S, Busse PJ. Innate and adaptive immunosenescence. Ann Allergy Asthma Immunol. 2010;104(3):183–90.

    CAS  PubMed  Google Scholar 

  87. Verdú E, Ceballos D, Vilches JJ, Navarro X. Influence of aging on peripheral nerve function and regeneration. J Peripher Nerv Syst. 2000;5(4):191–208.

    PubMed  Google Scholar 

  88. Wang Y-J, Zhou C-J, Shi Q, Smith N, Li T-F. Aging delays the regeneration process following sciatic nerve injury in rats. J Neurotrauma. 2007;24(5):885–94.

    PubMed  Google Scholar 

  89. Bokov A, Chaudhuri A, Richardson A. The role of oxidative damage and stress in aging. Mech Ageing Dev. 2004;125(10-11):811–26.

    CAS  PubMed  Google Scholar 

  90. Garbay B, Heape A, Sargueil F, Cassagne C. Myelin synthesis in the peripheral nervous system. Prog Neurobiol. 2000;61(3):267–304.

    CAS  PubMed  Google Scholar 

  91. Blair IA. Lipid hydroperoxide-mediated DNA damage. Exp Gerontol. 2001;36(9):1473–81.

    CAS  PubMed  Google Scholar 

  92. Opalach K, Rangaraju S, Madorsky I, Leeuwenburgh C, Notterpek L. Lifelong calorie restriction alleviates age-related oxidative damage in peripheral nerves. Rejuvenation Res. 2010;13(1):65–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. SHERMAN BM, WEST JH, KORENMAN SG. The menopausal transition: analysis of LH, FSH, estradiol, and progesterone concentrations during menstrual cycles of older women. J Clin Endoc Metab. 1976;42(4):629–36.

    CAS  Google Scholar 

  94. Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. Advances in protein chemistry and structural biology. Elsevier; 2019:135-170.

  95. Simpson E, Santen RJ. Celebrating 75 years of oestradiol. J Mol Endocrinol. 2015;55(3):T1.

    CAS  PubMed  Google Scholar 

  96. Samavat H, Kurzer MS. Estrogen metabolism and breast cancer. Cancer Lett. 2015;356(2 Pt A):231–43. https://doi.org/10.1016/j.canlet.2014.04.018.

    Article  CAS  PubMed  Google Scholar 

  97. Blair IA. Analysis of estrogens in serum and plasma from postmenopausal women: past present, and future. Steroids. 2010;75(4-5):297–306. https://doi.org/10.1016/j.steroids.2010.01.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bai SW, Chung DJ, Yoon JM, Shin JS, Kim SK, Park KH. Roles of estrogen receptor, progesterone receptor, p53 and p21 in pathogenesis of pelvic organ prolapse. Int Urogynecol J Pelvic Floor Dysfunct. 2005;16(6):492–6. https://doi.org/10.1007/s00192-005-1310-9.

    Article  PubMed  Google Scholar 

  99. Hendrix SL, Cochrane BB, Nygaard IE, et al. Effects of estrogen with and without progestin on urinary incontinence. Jama. 2005;293(8):935–48. https://doi.org/10.1001/jama.293.8.935.

    Article  CAS  PubMed  Google Scholar 

  100. Mokrzycki ML, Mittal K, Smilen SW, Blechman AN, Porges RF, Demopolous RI. Estrogen and progesterone receptors in the uterosacral ligament. Obstet Gynecol. 1997;90(3):402–4. https://doi.org/10.1016/s0029-7844(97)00285-8.

    Article  CAS  PubMed  Google Scholar 

  101. Cox DA, Helvering LM. Extracellular matrix integrity: a possible mechanism for differential clinical effects among selective estrogen receptor modulators and estrogens? Mol Cell Endocrinol. 2006;247(1-2):53–9.

    CAS  PubMed  Google Scholar 

  102. Moalli PA, Debes KM, Meyn LA, Howden NS, Abramowitch SD. Hormones restore biomechanical properties of the vagina and supportive tissues after surgical menopause in young rats. Am J Obstet Gynecol. 2008;199(2):161. e1–8.

    Google Scholar 

  103. Moalli P, Talarico L, Sung V, et al. Impact of menopause on collagen subtypes in the arcus tendineous fasciae pelvis. Am J Obstet Gynecol. 2004;190(3):620–7.

    CAS  PubMed  Google Scholar 

  104. Zong W, Zyczynski HM, Meyn LA, Gordy SC, Moalli PA. Regulation of MMP-1 by sex steroid hormones in fibroblasts derived from the female pelvic floor. Am J Obstet Gynecol. 2007;196(4):349. e1–349. e11.

    Google Scholar 

  105. Zong W, Meyn LA, Moalli PA. The amount and activity of active matrix metalloproteinase 13 is suppressed by estradiol and progesterone in human pelvic floor fibroblasts. Biol Reprod. 2009;80(2):367–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zong W, Jallah ZC, Stein SE, Abramowitch SD, Moalli PA. Repetitive mechanical stretch increases extracellular collagenase activity in vaginal fibroblasts. Female Pelvic Med Reconstr Surg. 2010;16(5):257.

    PubMed  PubMed Central  Google Scholar 

  107. Ulrich D, Edwards SL, Su K, et al. Influence of reproductive status on tissue composition and biomechanical properties of ovine vagina. PLoS One. 2014;9(4):e93172.

    PubMed  PubMed Central  Google Scholar 

  108. Wagenseil JE, Mecham RP. New insights into elastic fiber assembly. Birth Defects Res Part C: Embryo Today: Revi. 2007;81(4):229–40.

    CAS  Google Scholar 

  109. Papke CL, Yanagisawa H. Fibulin-4 and fibulin-5 in elastogenesis and beyond: insights from mouse and human studies. Matrix Biol. 2014;37:142–9.

    CAS  PubMed  Google Scholar 

  110. Drewes PG, Yanagisawa H, Starcher B, et al. Pelvic organ prolapse in fibulin-5 knockout mice: pregnancy-induced changes in elastic fiber homeostasis in mouse vagina. Am J Pathol. 2007;170(2):578–89. https://doi.org/10.2353/ajpath.2007.060662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu X, Zhao Y, Pawlyk B, Damaser M, Li T. Failure of elastic fiber homeostasis leads to pelvic floor disorders. Am J Pathol. 2006;168(2):519–28. https://doi.org/10.2353/ajpath.2006.050399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Alarab M, Bortolini MA, Drutz H, Lye S, Shynlova O. LOX family enzymes expression in vaginal tissue of premenopausal women with severe pelvic organ prolapse. Int Urogynecol J. 2010;21(11):1397–404. https://doi.org/10.1007/s00192-010-1199-9.

    Article  PubMed  Google Scholar 

  113. Shynlova O, Bortolini MA, Alarab M. Genes responsible for vaginal extracellular matrix metabolism are modulated by women's reproductive cycle and menopause. Int Braz J Urol. 2013;39(2):257–67. https://doi.org/10.1590/s1677-5538.ibju.2013.02.15.

    Article  PubMed  Google Scholar 

  114. Zhao BH, Zhou JH. Decreased expression of elastin, fibulin-5 and lysyl oxidase-like 1 in the uterosacral ligaments of postmenopausal women with pelvic organ prolapse. J Obstet Gynaecol Res. 2012;38(6):925–31. https://doi.org/10.1111/j.1447-0756.2011.01814.x.

    Article  CAS  PubMed  Google Scholar 

  115. Pascual G, Mendieta C, Mecham RP, Sommer P, Bellón JM, Buján J. Down-regulation of lysyl oxydase-like in aging and venous insufficiency. Histol Histopathol. 2008;23(2):179–86. https://doi.org/10.14670/hh-23.179.

    Article  CAS  PubMed  Google Scholar 

  116. Matthews J, Gustafsson JA. Estrogen signaling: a subtle balance between ER alpha and ER beta. Mol Interv. 2003;3(5):281–92. https://doi.org/10.1124/mi.3.5.281.

    Article  CAS  PubMed  Google Scholar 

  117. Levin ER. Integration of the extranuclear and nuclear actions of estrogen. Mol Endocrinol. 2005;19(8):1951–9. https://doi.org/10.1210/me.2004-0390.

    Article  CAS  PubMed  Google Scholar 

  118. Curtis SW, Washburn T, Sewall C, et al. Physiological coupling of growth factor and steroid receptor signaling pathways: estrogen receptor knockout mice lack estrogen-like response to epidermal growth factor. Proc Natl Acad Sci U S A. 1996;93(22):12626–30. https://doi.org/10.1073/pnas.93.22.12626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ignar-Trowbridge DM, Pimentel M, Parker MG, McLachlan JA, Korach KS. Peptide growth factor cross-talk with the estrogen receptor requires the a/B domain and occurs independently of protein kinase C or estradiol. Endocrinology. 1996;137(5):1735–44. https://doi.org/10.1210/endo.137.5.8612509.

    Article  CAS  PubMed  Google Scholar 

  120. Zhao C, Matthews J, Tujague M, et al. Estrogen receptor beta2 negatively regulates the transactivation of estrogen receptor alpha in human breast cancer cells. Cancer Res. 2007;67(8):3955–62. https://doi.org/10.1158/0008-5472.can-06-3505.

    Article  CAS  PubMed  Google Scholar 

  121. Goldstein SR, Nanavati N. Adverse events that are associated with the selective estrogen receptor modulator levormeloxifene in an aborted phase III osteoporosis treatment study. Am J Obstet Gynecol. 2002;187(3):521–7. https://doi.org/10.1067/mob.2002.123938.

    Article  CAS  PubMed  Google Scholar 

  122. Albertazzi P, Sharma S. Urogenital effects of selective estrogen receptor modulators: a systematic review. Climacteric. 2005;8(3):214–20. https://doi.org/10.1080/13697130500117946.

    Article  CAS  PubMed  Google Scholar 

  123. Goldstein SR, Johnson S, Watts NB, Ciaccia AV, Elmerick D, Muram D. Incidence of urinary incontinence in postmenopausal women treated with raloxifene or estrogen. Menopause. 2005;12(2):160–4. https://doi.org/10.1097/00042192-200512020-00010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Rufus Cartwright, Dr. Maria Gyhagen, and Dr. Ian Milson for their contribution to revising this manuscript and giving significant input.

Funding

Grant 2019/26723-5, São Paulo Research Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Contributions

AY Weintraub, J Deprest: Project development, manuscript editing, and approval of the final manuscript.

J Manonai, P Moalli, O Shynlova: Manuscript editing and approval of the final manuscript.

LGO Brito, GMV Pereira, MA Bortolini: Project development, data management and analysis, manuscript editing, and approval of the final manuscript.

Corresponding author

Correspondence to Luiz Gustavo Oliveira Brito.

Ethics declarations

Conflict of interests

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito, L.G.O., Pereira, G.M.V., Moalli, P. et al. Age and/or postmenopausal status as risk factors for pelvic organ prolapse development: systematic review with meta-analysis. Int Urogynecol J 33, 15–29 (2022). https://doi.org/10.1007/s00192-021-04953-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-021-04953-1

Keywords

Navigation