Skip to main content
Log in

Real-time precise orbit and clock estimation of multi-GNSS satellites with undifferenced ambiguity resolution

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Real-time precise orbit and clock products are necessary for Global Navigation Satellite System (GNSS) real-time precise applications. In the classical strategy, the real-time orbit is predicted from post-processed least-squares solutions and then the clock is estimated in real-time filtering, which are quite different and separate processes. We proposed an integrated filter method in which the satellite orbit and clock states are estimated simultaneously based on the undifferenced observation model. With the estimation of satellite and receiver uncalibrated phase delays (UPDs), the undifferenced ambiguities are resolved in real time, resulting in the ambiguity-fixed satellite orbit and clock solutions. One-month observations of 150 globally distributed stations from multi-GNSS experiment tracking network are processed using the proposed method. In the experiment, the RMS of wide-lane (WL) and narrow-lane (NL) UPD residuals is all less than 0.07 cycles and 92% of WL and NL UPD residuals are within ± 0.1 cycle, contributing to a high fixing success rate of more than 90% for both GPS and Galileo satellites. Comparison with the IGS and CODE final orbit products shows that ambiguity resolution (AR) brings about 45% and 44% improvements to 3D RMS of the filter-based orbit solutions, from 8.2 to 4.7 cm and 9.5 to 5.4 cm for GPS and Galileo satellites, respectively. For comparison, the prediction orbits of the IGU and GBU products in the same periods are also evaluated. The average 3D RMS of the ultra-rapid products in the same periods is 5.3 cm and 7.8 cm for GPS and Galileo satellites, respectively, which are larger than that of the filter orbits. Compared to the float solutions, the STDs of GPS and Galileo satellite clocks are improved by more than 40% after AR. In addition, both convergence time and accuracy of kinematic precise point positioning AR by using filter-based products are better than that of using ultra-rapid products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The multi-GNSS datasets analyzed during the current study are available from ftp://igs.gnsswhu.cn/.

References

  • Bertiger W, Bar-Sever Y, Bokor E, Butala M, Dorsey A, Gross J, Harvey N, Lu W (2012) First orbit determination performance assessment for the OCX navigation software in an operational environment. In: Proceedings of the ION GNSS 2012, Institute of Navigation Nashville, Tennessee, USA, September 17–21, pp 1–9

  • Bizouard C, Lambert S, Gattano C, Becker O, Richard J (2019) The IERS EOP 14C04 solution for earth orientation parameters consistent with ITRF 2014. J Geodesy 93(5):621–633. https://doi.org/10.1007/s00190-018-1186-3

    Article  Google Scholar 

  • Blewitt G (1989) Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km. J Geophys Res 94(B8):10187–10203

    Article  Google Scholar 

  • Blewitt G (1998) GPS data processing methodology: from theory to applications. In: Teunissen PJG, Kleusberg A (eds) GPS for geodesy. Springer, Berlin, pp 231–270

    Chapter  Google Scholar 

  • Boehm J, Niell A, Tregoning P, Schuh H (2006) Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33(7):199–208

    Article  Google Scholar 

  • Choi KK, Ray J, Griffiths J, Bae TS (2013) Evaluation of GPS orbit prediction strategies for the IGS ultra-rapid products. GPS Solut 17(3):403–441

    Article  Google Scholar 

  • Collins P, Lahaye F, Heroux P, Bisnath S (2008) Precise point positioning with ambiguity resolution using the decoupled clock model. In: Proceedings of the 21st international technical meeting of the satellite Division of the Institute of Navigation. Savannah, GA, pp 1315–1322

  • Dach R, Selmke I, Villiger A et al (2021) Review of recent GNSS modelling improvements based on CODEs Repro3 contribution. Adv Space Res 68:1263–1280. https://doi.org/10.1016/j.asr.2021.04.046

    Article  Google Scholar 

  • Dai X, Dai Z, Lou Y, Li M, Qing Y (2018) The filtered GNSS real-time precise orbit solution. China Satellite Navigation Conference (CSNC). In: Proceedings. CSNC 2018. Lecture notes in electrical engineering, vol 498. Springer, Singapore, pp 317–326

  • Dai Z, Dai X, Zhao Q, Liu J (2019) Improving real-time clock estimation with undifferenced ambiguity fixing. GPS Solut 23:1–12. https://doi.org/10.1007/s10291-019-0837-z

    Article  Google Scholar 

  • Dilssner F, Springer T, Gienger G, Dow J (2011) The GLONASS-M satellite yaw-attitude model. Adv Space Res 47(1):160–171. https://doi.org/10.1016/j.asr.2010.09.007

    Article  Google Scholar 

  • Dong D, Bock Y (1989) Global Positioning System network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J Geophys Res 94(B4):3949–3966

    Article  Google Scholar 

  • Duan B, Hugentobler U, Chen J, Selmke I, Wang J (2019) Prediction versus real-time orbit determination for GNSS satellites. GPS Solut 23:39. https://doi.org/10.1007/s10291-019-0834-2

    Article  Google Scholar 

  • Fu W, Yang Y, Zhang Q, Huang G (2018) Real-time estimation of BDS/GPS high-rate satellite clock offsets using sequential least squares. Adv Space Res 62:477–487

    Article  Google Scholar 

  • Gabor M, Nerem R (1999) GPS carrier phase ambiguity resolution using satellite-satellite single differences. In: Proceedings of the 12th international technical meeting of the satellite division of the institute of navigation. Nashville, TN, pp 1569–1578

  • Gabor M, Nerem R (2002) Satellite–satellite single-difference phase bias calibration as applied to ambiguity resolution. Navigation 49:223–242. https://doi.org/10.1002/j.2161-4296.2002.tb00270.x

    Article  Google Scholar 

  • Ge M, Gendt G, Dick G, Zhang FP (2005) Improving carrier-phase ambiguity resolution in global GPS network solutions. J Geod 79(1–3):103–110. https://doi.org/10.1007/s00190-005-0447-0

    Article  Google Scholar 

  • Ge M, Gendt G, Dick G et al (2006) A new data processing strategy for Huge GNSS Global Networks. J Geod 80:199–203. https://doi.org/10.1007/s00190-006-0044-x

    Article  Google Scholar 

  • Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J Geod 82(7):389–399. https://doi.org/10.1007/s00190-007-0187-4

    Article  Google Scholar 

  • Ge M, Chen J, Dousa J, Gendt G, Wickert J (2012) A computationally efficient approach for estimating high-rate satellite clock corrections in realtime. GPS Solut 16:9–17

    Article  Google Scholar 

  • Ge M, Chen J, Gendt G (2009) EPOS-RT: software for realtime GNSS data processing. Geophysical research abstracts, vol 11, EGU2009-8933, EGU general assembly 2009, Vienna

  • Geng J, Meng X, Dodson A, Teferle F (2010) Integer ambiguity resolution in precise point positioning: method comparison. J Geod 84:569–581

    Article  Google Scholar 

  • Geng J, Shi C, Ge M, Dodson A, Lou Y, Zhao Q, Liu J (2012) Improving the estimation of fractional-cycle biases for ambiguity resolution in precise point positioning. J Geod 86(8):579–589

    Article  Google Scholar 

  • Gong X, Gu S, Lou Y, Zheng F, Ge M, Liu J (2018) An efficient solution of real-time data processing for multi-GNSS network. J Geod 92(7):797–809

    Article  Google Scholar 

  • Gong X, Gu S, Zheng F, Wu Q, Liu S, Lou Y (2021) Improving GPS and Galileo precise data processing based on calibration of signal distortion biases. Measurement 174:108981

    Article  Google Scholar 

  • GSA (2017) Galileo satellite metadata. https://www.gsc-europa.eu/support-to-developers/galileo-satellite-metadata. Accessed 31 Oct 2019

  • Gu S, Dai C, Fang W, Zheng F, Wang Y, Zhang Q, Lou Y, Niu X (2021) Multi-GNSS PPP/INS tightly coupled integration with atmospheric augmentation and its application in urban vehicle navigation. J Geod 95:64. https://doi.org/10.1007/s00190-021-01514-8

    Article  Google Scholar 

  • Hadas T, Bosy J (2015) IGS RTS precise orbits and clocks verification and quality degradation over time. GPS Solut 19(1):93–105

    Article  Google Scholar 

  • Hatch R (1982) The synergism of GPS code and carrier measurements. In: Proceedings of the third international symposium on satellite doppler positioning at physical sciences laboratory of New Mexico State University, Feb 8–12, vol 2, pp 1213–1231

  • Hauschild A, Montenbruck O (2009) Kalman-filter-based GPS clock estimation for near real-time positioning. GPS Solut 13:173–182. https://doi.org/10.1007/s10291-008-0110-3

    Article  Google Scholar 

  • Kazmierski K, Sośnica K, Hadas T (2018) Quality assessment of multi-GNSS orbits and clocks for real-time precise point positioning. GPS Solut 22:11. https://doi.org/10.1007/s10291-017-0678-6

    Article  Google Scholar 

  • Kouba J (2009) A simplified yaw-attitude model for eclipsing GPS satellites. GPS Solut 13(1):1–12

    Article  Google Scholar 

  • Kuang D, Desai S, Sibois A (2017) Observed features of GPS Block IIF satellite yaw maneuvers and corresponding modeling. GPS Solut 21:739–745. https://doi.org/10.1007/s10291-016-0562-9

    Article  Google Scholar 

  • Laurichesse D, Mercier F (2007) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP. In: Proceedings of the 20th international technical meeting of the satellite division of the institute of navigation. Fort Worth, TX, pp 839–848

  • Laurichesse D, Cerri L, Berthias P, Mercier F (2013) Real time precise GPS constellation and clocks estimation by means of a Kalman filter. In: Proceeding of ION GNSS 2013, Institute of Navigation Nashville, Tennessee, USA, September 16–20, pp 1155–1163

  • Li X, Xiong Y, Yuan Y, Wu J, Huang J (2019) Real-time estimation of multi-GNSS integer recovery clock with undifferenced ambiguity resolution. J Geod 93:2515–2528. https://doi.org/10.1007/s00190-019-01312-3

    Article  Google Scholar 

  • Luo X, Lou Y, Gu S, Li G, Xiong C, Song W, Zhao Z (2021) Local ionospheric plasma bubble revealed by BDS Geostationary Earth Orbit satellite observations. GPS Solut 25:117. https://doi.org/10.1007/s10291-021-01155-6

    Article  Google Scholar 

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6):394–415

    Article  Google Scholar 

  • Melbourne WG (1985) The case for ranging in GPS-based geodetic systems. In: Proceedings of first international symposium on precise positioning with the global positioning system, Rockville, US, pp 373–386

  • Parkinson BW, Spilker JJ, Axelard P, Enge P (1996) Global positioning system: theory and applications, vol I. American Institute of Aeronautics and Astronautics Inc, Reston

    Book  Google Scholar 

  • Pavlis N, Holmes S, Kenyon S, Factor J (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117(B4):B04406

    Google Scholar 

  • Pearlman M, Degnan J, Bosworth J (2002) The international laser ranging service. Adv Space Res 30(2):135–143. https://doi.org/10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  • Petit G, Luzum B (2010) IERS conventions (2010), Technical report, Bureau International des poids et mesures sevres (France)

  • Rao C (1973) Linear statistical inference and its applications. Wiley, New York

    Book  Google Scholar 

  • Rocken C, Van Hove T, Ware R (1997) Near real-time GPS sensing of atmospheric water vapour. Geophys Res Lett 24(24):3221–3224

    Article  Google Scholar 

  • Rodriguez-Solano C, Hugentobler U, Steigenberger P, Lutz S (2012a) Impact of Earth radiation pressure on GPS position estimates. J Geod 86(5):309–317. https://doi.org/10.1007/s00190-011-0517-4

    Article  Google Scholar 

  • Rodriguez-Solano C, Hugentobler U, Steigenberger P (2012b) Adjustable box-wing model for solar radiation pressure impacting GPS satellites. Adv Space Res 49:1113–1128. https://doi.org/10.1016/j.asr.2012.01.016

    Article  Google Scholar 

  • Saastamoinen J (1972) Contribution to the theory of atmospheric refraction. Bull Geodesique 105(1):279–298

    Article  Google Scholar 

  • Shi C, Guo S, Gu S, Yang X, Gong X, Deng Z, Ge M, Schuh H (2019) Multi-GNSS satellite clock estimation constrained with oscillator noise model in the existence of data discontinuity. J Geod 93:515–528

    Article  Google Scholar 

  • Sidorov D, Dach R, Polle B et al (2020) Adopting the empirical CODE orbit model to Galileo satellites. Adv Space Res 66:2799–2811. https://doi.org/10.1016/j.asr.2020.05.028

    Article  Google Scholar 

  • Springer TA, Beutler G, Rothacher M (1999) Improving the orbit estimates of GPS satellites. J Geod 73:147–157. https://doi.org/10.1007/s001900050230

    Article  Google Scholar 

  • Steigenberger P, Thoelert S, Montenbruck O (2018) GNSS satellite transmit power and its impact on orbit determination. J Geod 92:609–624. https://doi.org/10.1007/s00190-017-1082-2

    Article  Google Scholar 

  • Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70:65–82. https://doi.org/10.1007/BF00863419

    Article  Google Scholar 

  • Teunissen PJG, Khodabandeh A (2014) Review and principles of PPP-RTK methods. J Geod. https://doi.org/10.1007/s00190-014-0771-3

    Article  Google Scholar 

  • Thaller D, Krügel M, Rothacher M, Tesmer V, Schmid R, Angermann D (2007) Combined Earth orientation parameters based on homogeneous and continuous VLBI and GPS data. J Geodesy 81(6–8):529–541. https://doi.org/10.1007/s00190-006-0115-z

    Article  Google Scholar 

  • Wu J, Wu S, Hajj G, Bertiger W, Lichten S (1993) Effects of antenna orientation on GPS carrier phase. Manuscr Geodaet 18:91–98

    Google Scholar 

  • Wübbena G (1985) Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements. In: Proceedings of first international symposium on precise positioning with the global positioning system, Rockville, US, pp 403–412

  • Zhang Q, Moore P, Hanley J, Martin S (2007) Auto-BAHN: Software for near realtime GPS orbit and clock computations. Adv Space Res 39(10):1531–1538

    Article  Google Scholar 

  • Zhang W, Lou Y, Gu S, Shi C, Haase J, Liu J (2016) Joint estimation of GPS/BDS real-time clocks and initial results. GPS Solut 20:665–676

    Article  Google Scholar 

Download references

Acknowledgements

Thanks for the data support of MGEX. This study is financially supported by the National Natural Science Foundation of China (Grand No. 41904021).

Author information

Authors and Affiliations

Authors

Contributions

DX and GX designed and performed this research; DX and LC analyzed data; DX and GX wrote the paper; all authors provided critical feedback and reviewed the paper.

Corresponding author

Correspondence to Xiaopeng Gong.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, X., Gong, X., Li, C. et al. Real-time precise orbit and clock estimation of multi-GNSS satellites with undifferenced ambiguity resolution. J Geod 96, 73 (2022). https://doi.org/10.1007/s00190-022-01664-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-022-01664-3

Keywords

Navigation