Skip to main content
Log in

Local ionospheric plasma bubble revealed by BDS Geostationary Earth Orbit satellite observations

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Benefiting from the special design of BeiDou Navigation Satellite System (BDS) constellation, its Geostationary Earth Orbit (GEO) satellites observations can provide favorable conditions to investigate the ionospheric plasma bubble at low latitudes. This study proposes using BDS GEO Rate of Total Electron Content Index observations to analyze the equatorial plasma bubble characteristics. We use GEO satellites instead of ground-based GNSS stations as a reference and compare the onset time of plasma bubbles observed by different GEO satellites, i.e., the reference GEO, the west and east GEO satellites, during geomagnetically quiet days, and determine plasma bubbles that are generated locally or drifted from elsewhere. According to this strategy, it is found that there is a significant difference in the occurrence rates of plasma bubbles generated locally over two closely located stations, i.e., LALX (18.19 °N, 104.98 °E; geomagnetic latitude: 11.31 °N) and YONG (16.83 °N, 112.34 °E; geomagnetic latitude: 9.96 °N) during the whole year of 2014. Statistical results indicate that during March and September equinoxes, the occurrence rates of plasma bubbles generated locally at the eastern station YONG are 52% and 34%, while at the western station LALX, they are only 34% and 25%. Further analysis reveals a close relationship between the higher bubble generation rates and the active atmospheric inter-tropical convergence zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

BDS data from stations LALX and YONG can be obtained at the website of the Crustal Movement Observation Network of China (www.neis.org.cn/) or by contacting the corresponding author. BDS data from station SIN1 can be downloaded at the International GNSS Service link (ftp://cddis.gsfc.nasa.gov/). The OLR data are provided by the National Oceanic and Atmospheric Administration (www.esrl.noaa.gov/psd/data/gridded/data.interp_OLR.html#plot). The Kp and Dst data are released by the NASA’s OMNIweb (https://omniweb.gsfc.nasa.gov/form/dx1.html).

References

  • Abdu MA, Iyer KN, Medeiros RTD, Batista IS, Sobral JHA (2006) Thermospheric meridional wind control of equatorial spread F and evening prereversal electric field. Geophys Res Lett 33(7):L07106

    Google Scholar 

  • Abdu MA, Batista IS, Reinisch BW, Souza JR, Sobral JHA, Pedersen TR, Medeiros AF, Schuch NJ, Paula ERD, Groves KM (2009) Conjugate point equatorial experiment (COPEX) campaign in Brazil: electrodynamics highlights on spread F development conditions and day-to-day variability. J Geophys Res Sp Phys 114(A4):A04308

    Google Scholar 

  • Blewitt G (1990) An automatic editing algorithm for GPS data. Geophys Res Lett 17(3):199–202

    Article  Google Scholar 

  • Bolmgren K, Mitchell C, Bruno J, Bust G (2020) Tomographic imaging of traveling ionospheric disturbances using GNSS and geostationary satellite observations. J Geophys Res Sp Phys 125(3):e2019JA027551

    Google Scholar 

  • Drob DP, Emmert JT, Meriwether JW, Makela JJ, Doornbos E, Conde M, Hernandez G, Noto J, Zawdie KA, McDonald SE, Huba JD, Klenzing JH (2015) An update to the horizontal wind model (HWM): the quiet time thermosphere. Earth Sp Sci 2(7):301–319

    Article  Google Scholar 

  • Fejer BG, Tracy BD, Pfaff RF (2013) Equatorial zonal plasma drifts measured by the C/NOFS satellite during the 2008–2011 solar minimum. J Geophys Res Sp Phys 118(6):3891–3897

    Article  Google Scholar 

  • Fukushima D, Shiokawa K, Otsuka Y, Nishioka M, Kubota M, Tsugawa T, Nagatsuma T, Komonjinda S, Yatini CY (2015) Geomagnetically conjugate observation of plasma bubbles and thermospheric neutral winds at low latitudes. J Geophys Res Sp Phys 120(3):2222–2231

    Article  Google Scholar 

  • Gu G, Zhang C (2002) Cloud components of the intertropical convergence zone. J Geophys Res 107(D21):4565

    Google Scholar 

  • Gurav OB, Narayanan VL, Sharma AK, Ghodpage RN, Gai HP, Patil PT (2019) Airglow imaging observations of some evolutionary aspects of equatorial plasma bubbles from Indian sector. Adv Sp Res 64(2):385–399

    Article  Google Scholar 

  • Hu L, Yue X, Ning B (2017) Development of the beidou ionospheric observation network in china for space weather monitoring. Sp Weather 15(8):974–984

    Article  Google Scholar 

  • Hu L, Zhao X, Sun W, Wu Z, Zheng J, Xie H, Huang Z, Ning B, Li G (2020) Statistical characteristics and correlation of low-latitude F region bottom-type irregularity layers and plasma plumes over Sanya. J Geophys Res Sp Phys 125(8):1–13

    Google Scholar 

  • Huang CS, Hairston MR (2015) The postsunset vertical plasma drift and its effects on the generation of equatorial plasma bubbles observed by the C/NOFS satellite. J Geophys Res Sp Phys 120(3):2263–2275

    Article  Google Scholar 

  • Huang CS, Kelley MC (1996) Nonlinear evolution of equatorial spread F1. On the role of plasma instabilities and spatial resonance associated with gravity wave seeding. J Geophys Res Sp Phys 101(A1):283–292

    Article  Google Scholar 

  • Huang CS, Roddy PA (2016) Effects of solar and geomagnetic activities on the zonal drift of equatorial plasma bubbles. J Geophys Res Sp Phys 121(1):628–637

    Article  Google Scholar 

  • Huang CS, La BOD, Pfaff RF, Retterer JM, Roddy PA, Hunton DE, Su YJ, Su SY, Rich FJ (2010) Zonal drift of plasma particles inside equatorial plasma bubbles and its relation to the zonal drift of the bubble structure. J Geophys Res 115(A7):A07316

    Google Scholar 

  • Huang F, Liu J, Dou X, Luan X, Zhong J (2017) Nighttime medium-scale traveling ionospheric disturbances from airglow imager and global navigation satellite systems observations. Geophys Res Lett 45(1):31–38

    Article  Google Scholar 

  • Juan JM, Aragon-Angel A, Sanz J, González-Casado G, Rovira-Garcia A (2017) A method for scintillation characterization using geodetic receivers operating at 1 Hz. J Geod 91(11):1383–1397

    Article  Google Scholar 

  • Kil H, Oh SJ (2011) Dependence of the evening prereversal enhancement of the vertical plasma drift on geophysical parameters. J Geophys Res 116(A5):A05311

    Google Scholar 

  • Kintner PM, Ledvina BM, Paula ERD (2007) GPS and ionospheric scintillations. Sp Weather 5(9):1–23

    Google Scholar 

  • Kudeki E, Franke SJ (1986) Radar interferometer estimate of zonal drift variability during spread F. Geophys Res Lett 13(11):1117–1120

    Article  Google Scholar 

  • Lei J et al (2018) Was magnetic storm the only driver of the long-duration enhancements of daytime total electron content in the Asian-Australian sector between 7 and 12 September 2017? J Geophys Res Sp Phys 123(4):3217–3232

    Article  Google Scholar 

  • Li G, Ning B, Liu L, Wan W, Liu JY (2009) Effect of magnetic activity on plasma bubbles over equatorial and low-latitude regions in East Asia. Ann Geophys 27(1):303–312

    Article  Google Scholar 

  • Li G, Ning B, Abdu MA, Otsuka Y, Yokoyama T, Yamanoto M, Liu L (2013) Longitudinal characteristics of spread F backscatter plumes observed with the EAR and Sanya VHF radar in Southeast Asia. J Geophys Res 118(10):6544–6557

    Article  Google Scholar 

  • Li G, Otsuka Y, Ning B, Abdu MA, Yamanoto M, Wan W, Liu L, Abadi P (2016) Enhanced ionospheric plasma bubble generation in more active ITCZ. Geophys Res Lett 43(6):2389–2395

    Article  Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77(6):1275–1277

    Google Scholar 

  • Liu K, Li G, Ning B, Hu L, Li H (2015) Statistical characteristics of low-latitude ionospheric scintillation over China. Adv Sp Res 55(5):1356–1365

    Article  Google Scholar 

  • Luo X, Lou Y, Xiao Q, Gu S, Chen B, Liu Z (2018) Investigation of ionospheric scintillation effects on BDS precise point positioning at low-latitude regions. GPS Solut 22(3):63

    Article  Google Scholar 

  • Luo X, Xiong C, Gu S, Lou Y, Stolle C, Wan X, Liu K, Song W (2019) Geomagnetically conjugate observations of equatorial plasma irregularities from Swarm constellation and ground-based GPS stations. J Geophys Res Sp Phys 124(5):3650–3665

    Article  Google Scholar 

  • Luo X, Gu S, Lou Y, Cai L, Liu Z (2020) Amplitude scintillation index derived from C/N0 measurements released by common geodetic GNSS receivers operating at 1 Hz. J Geod 94(2):27

    Article  Google Scholar 

  • Ma G, Maruyama T (2006) A super bubble detected by dense GPS network at east Asian longitudes. Geophys Res Lett 33(21):1–5

    Article  Google Scholar 

  • McClure JP, Singh S, Bamgboye DK, Johnson FS, Kil H (1998) Occurrence of equatorial F region irregularities: evidence for tropospheric seeding. J Geophys Res 103(A12):29119–29135

    Article  Google Scholar 

  • Otsuka Y, Shiokawa K, Ogawa T, Wilkinson P (2002) Geomagnetic conjugate observations of equatorial airglow depletions. Geophys Res Lett 29(15):43-1-43–4

    Article  Google Scholar 

  • Padokhin AM, Tereshin NA, Yasyukevich YV, Andreeva ES, Nazarenko MO, Yasynkevich AS, Kozlovtseva EA, Kurbatov GA (2019) Application of BDS-GEO for studying TEC variability in equatorial ionosphere on different time scales. Adv Sp Res 63(1):257–269

    Article  Google Scholar 

  • Pi X, Mannucci AJ, Lindqwister UJ, Ho CM (1997) Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophys Res Lett 24(18):2283–2286

    Article  Google Scholar 

  • Pimenta AA, Bittencourt JA, Fagundes PR, Sahai Y, Buriti RA, Takahashi H, Taylor MJ (2003) Ionospheric plasma bubble zonal drifts over the tropical region: a study using OI 630 nm emission all-sky images. J Atmos Solar-Terrestrial Phys 65:1117–1126

    Article  Google Scholar 

  • Pimenta AA, Sahai Y, Bittencourt JA, Abdu MA, Takahashi H, Taylor MJ (2004) Plasma blobs observed by ground-based optical and radio techniques in the Brazilian tropical sector. Geophys Research Lett 31(12):L12810

    Article  Google Scholar 

  • Retterer JM (2010) Forecasting low-latitude radio scintillation with 3-D ionospheric plume models: 1. Plume Model J Geophys Res 115(A03):A03306

    Google Scholar 

  • Rezende LFC, De Paula ER, Stephany S, Kantor IJ, Muella MTAH, Siqueira PMD, Correa KS (2010) Survey and prediction of the ionospheric scintillation using data mining techniques. Sp Weather 8(6):S06D09

    Google Scholar 

  • Saito S, Maruyama T (2006) Ionospheric height variations observed by ionosondes along magnetic meridian and plasma bubble onsets. Ann Geophys 24(11):2991–2996

    Article  Google Scholar 

  • Savastano G, Komjathy A, Shume E, Vergados P, Ravanelli M, Verkhoglyadova O, Meng X, Crespi M (2019) Advantages of geostationary satellites for ionospheric anomaly studies: ionospheric plasma depletion following a rocket launch. Remote Sens 11(14):1734

    Article  Google Scholar 

  • Soakal JHA, Abdu MA (1991) Solar activity effects on equatorial plasma bubble zonal velocity and its latitude gradient as measured by airglow scanning photometers. J Atmos Terr Phys 53(8):729–742

    Article  Google Scholar 

  • Su S, Wu CL, Liu CH (2014) Correlation between the global occurrences of ionospheric irregularities and deep atmospheric convective clouds in the intertropical convergence zone (ITCZ). Earth, Planets Sp 66(1):134

    Article  Google Scholar 

  • Sun W, Wu B, Wu Z, Hu L, Zhao X, Zheng J, Xie H, Yang S, Ning B, Li G (2020) IONISE: an ionospheric observation network for irregularity and scintillation in east and southeast Asia. J Geophys Res Sp Phys 125(8):1–19

    Google Scholar 

  • Tsunoda RT (2010a) On seeding equatorial spread F during solstices. Geophys Res Lett 37(5):L05102

    Article  Google Scholar 

  • Tsunoda RT (2010b) On equatorial spread F: Establishing a seeding hypothesis. J Geophys Res 115(A12):A12303

    Google Scholar 

  • Tsunoda RT, Livingston RC, Park M, Hanson WB (1982) Equatorial plasma bubbles: vertically elongated wedges from the bottomside F layer. J Geophys Res 87(A11):9171–9180

    Article  Google Scholar 

  • Wan W, Ning B, Yuan H, Li J, Li L, Liang J (1997) TID observation using a short baseline network of GPS receivers. Acta Geod Geophys Hungarica 32(3–4):321–327

    Google Scholar 

  • Woodman RF, Chau JL, Ilma RR (2006) Comparison of ionosonde and incoherent scatter drift measurements at the magnetic equator. Geophys Res Lett 33(1):L01103

    Article  Google Scholar 

  • Yokoyama T, Fukao S, Yamamoto M (2004) Relationship of the onset of equatorial F region irregularities with the sunset terminator observed with the equatorial atmosphere radar. Geophys Res Lett 31(24):L24804

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (Nos. 2018YFC1503502, 2017YFB0503401, and 2016YFB0501802), the National Natural Science Foundation of China (No. 41704032), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No. CUG2106354), the Fundamental Research Funds for the Central Universities (Nos. 2042019kf0222 and 2042019kf0031), and the Specialized Research Fund for Key Laboratory of Earth and Planetary Physics (DQXX2021-11). The authors are also grateful to the two reviewers for their constructive comments regarding to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengfeng Gu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Lou, Y., Gu, S. et al. Local ionospheric plasma bubble revealed by BDS Geostationary Earth Orbit satellite observations. GPS Solut 25, 117 (2021). https://doi.org/10.1007/s10291-021-01155-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-021-01155-6

Keywords

Navigation