Skip to main content
Log in

Understanding the mechanism of ultrasonic vibration-assisted drilling (UVAD) for micro-hole formation on silicon wafers using numerical and analytical techniques

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This study investigated the mechanism of UVAD using numerical and analytical techniques. Silicon wafers possess challenging cutting properties due to their inherent brittleness and susceptibility to cracking along specific crystal orientation. Hence, non-traditional cutting methods like UVAD hold promise for precision micro-hole drilling in silicon wafers. In order to comprehend the mechanism of UVAD, the numerical technique utilized a direct brittle micro-cracking model within a 2D finite element (FE) method. This facilitated a comparative analysis between conventional drilling (CD) and UVAD, with a specific focus on understanding the micro-cracking mechanisms during the mechanical process. This study examined primarily the cutting force, micro-fracture analysis, and cutting energy. The numerical technique effectively predicted micro-cracks within the brittle regime, a task that is challenging to accomplish using analytical methods alone. In parallel, an analytical technique was developed to predict brittle-ductile transition (BDT) lines by analyzing the thrust force and specific cutting energy (SCE), combined with the numerical technique. Various feed rates per revolution were tested to validate the analytical force predictions. The analytical results demonstrate that the force profile corresponds to the transient cutting depth, while the numerical results indicated that the direct brittle micro-cracking model effectively demonstrated the fracture mechanisms, particularly at greater depths of cut. The SCE graph can predict the formation of a ductile regime on the cutting surface of the drilled micro-hole, although predicting micro-fractures on the side edges of the drilled micro-holes remains challenging. Additionally, UVAD demonstrated a reduction in micro-fractures on the sides of drilled micro-holes, particularly at very low feed rates per revolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data availability

The material and data availability are obtainable as inquired to the first author and corresponding authors.

Code availability

The numerical and MATLAB codes are available as inquired permission to the first author and corresponding authors.

References

  1. Disney D, Shen ZJ (2013) Review of silicon power semiconductor technologies for power supply on chip and power supply in package applications. IEEE Trans Power Electron 28:4168–4181. https://doi.org/10.1109/TPEL.2013.2242095

    Article  Google Scholar 

  2. Djessas K, Bouchama I, Gauffier JL, Ben AZ (2014) Effects of indium concentration on the properties of In-doped ZnO films: applications to silicon wafer solar cells. Thin Solid Films 555:28–32. https://doi.org/10.1016/j.tsf.2013.08.109

    Article  Google Scholar 

  3. Arruebo M (2012) Drug delivery from structured porous inorganic materials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:16–30. https://doi.org/10.1002/wnan.132

    Article  Google Scholar 

  4. Xu Y, Hu X, Kundu S et al (2019) Paper-based sensors for biomedical applications. Sensors 19:1–22. https://doi.org/10.3390/s19132908

    Article  Google Scholar 

  5. Heidari SM, Anctil A (2022) Country-specific carbon footprint and cumulative energy demand of metallurgical grade silicon production for silicon photovoltaics. Resour Conserv Recycl 180:106171. https://doi.org/10.1016/j.resconrec.2022.106171

    Article  Google Scholar 

  6. Lee SH (2012) Analysis of ductile mode and brittle transition of AFM nanomachining of silicon. Int J Mach Tools Manuf 61:71–79. https://doi.org/10.1016/j.ijmachtools.2012.05.011

    Article  Google Scholar 

  7. Arif M, Rahman M, San WY (2012) A state-of-the-art review of ductile cutting of silicon wafers for semiconductor and microelectronics industries. Int J Adv Manuf Technol 63:481–504. https://doi.org/10.1007/s00170-012-3937-2

    Article  Google Scholar 

  8. Wang Y, Zhao B, Huang S, Qian Z (2021) Study on the subsurface damage depth of monocrystalline silicon in ultrasonic vibration assisted diamond wire sawing. Eng Fract Mech 258:108077. https://doi.org/10.1016/j.engfracmech.2021.108077

    Article  Google Scholar 

  9. Tang Y, Fuh JYH, Loh HT et al (2008) Laser dicing of silicon wafer. Surf Rev Lett 15:153–159. https://doi.org/10.1142/s0218625x08011147

    Article  Google Scholar 

  10. Matsubara N, Windemuth R, Mitsuru H, Atsushi H (2012) Plasma dicing technology. 2012 4th Electron Syst Technol Conf ESTC 2012. https://doi.org/10.1109/ESTC.2012.6542178

  11. Zhan C, Li C, Wang Y et al (2010) Numerical study of waterjet guided laser drilling of silicon based on FVM. 1213:1–7. https://doi.org/10.1063/1.3452076

  12. Goel S, Luo X, Comley P et al (2013) Brittle-ductile transition during diamond turning of single crystal silicon carbide. Int J Mach Tools Manuf 65:15–21. https://doi.org/10.1016/j.ijmachtools.2012.09.001

    Article  Google Scholar 

  13. Zhang J, Han L, Zhang J et al (2019) Brittle-to-ductile transition in elliptical vibration-assisted diamond cutting of reaction-bonded silicon carbide. J Manuf Process 45:670–681. https://doi.org/10.1016/j.jmapro.2019.08.005

    Article  Google Scholar 

  14. Zhang X, Arif M, Liu K et al (2013) A model to predict the critical undeformed chip thickness in vibration-assisted machining of brittle materials. Int J Mach Tools Manuf 69:57–66. https://doi.org/10.1016/j.ijmachtools.2013.03.006

    Article  Google Scholar 

  15. Ladonne M, Cherif M, Landon Y et al (2015) Modelling the vibration-assisted drilling process: identification of influential phenomena. Int J Adv Manuf Technol 81:1657–1666. https://doi.org/10.1007/s00170-015-7315-8

    Article  Google Scholar 

  16. Wang Y, Lin B, Wang S, Cao X (2014) Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing. Int J Mach Tools Manuf 77:66–73. https://doi.org/10.1016/j.ijmachtools.2013.11.003

    Article  Google Scholar 

  17. Chen Y, Su H, He J et al (2021) The effect of torsional vibration in longitudinal–torsional coupled ultrasonic vibration-assisted grinding of silicon carbide ceramics. Materials (Basel) 14:1–16. https://doi.org/10.3390/ma14030688

    Article  Google Scholar 

  18. Han X, Zhang D (2020) Effects of separating characteristics in ultrasonic elliptical vibration-assisted milling on cutting force, chip, and surface morphologies. Int J Adv Manuf Technol 108:3075–3084. https://doi.org/10.1007/s00170-020-05463-y

    Article  Google Scholar 

  19. Amini S, Soleimanimehr H, Nategh MJ et al (2008) FEM analysis of ultrasonic-vibration-assisted turning and the vibratory tool. J Mater Process Technol 201:43–47. https://doi.org/10.1016/j.jmatprotec.2007.11.271

    Article  Google Scholar 

  20. Chen W, Huo D, Shi Y, Hale JM (2018) State-of-the-art review on vibration-assisted milling: principle, system design, and application. Int J Adv Manuf Technol 97:2033–2049. https://doi.org/10.1007/s00170-018-2073-z

    Article  Google Scholar 

  21. Zheng L, Chen W, Huo D (2020) Review of vibration devices for vibration-assisted machining. Int J Adv Manuf Technol 108:1631–1651. https://doi.org/10.1007/s00170-020-05483-8

    Article  Google Scholar 

  22. Yang Z, Zhu L, Zhang G et al (2020) Review of ultrasonic vibration-assisted machining in advanced materials. Int J Mach Tools Manuf 156:103594. https://doi.org/10.1016/j.ijmachtools.2020.103594

    Article  Google Scholar 

  23. Ning F, Cong W (2020) Ultrasonic vibration-assisted (UV-A) manufacturing processes: State of the art and future perspectives. J Manuf Process 51:174–190. https://doi.org/10.1016/j.jmapro.2020.01.028

    Article  Google Scholar 

  24. Brehl D, Dow T (2008) Review of vibration-assisted machining. Precis Eng 32:153–172. https://doi.org/10.1016/j.precisioneng.2007.08.003

    Article  Google Scholar 

  25. Lotfi M, Akbari J (2021) Finite element simulation of ultrasonic-assisted machining: a review. Int J Adv Manuf Technol 116:2777–2796. https://doi.org/10.1007/s00170-021-07205-0

    Article  Google Scholar 

  26. Tsui C, Lu M (2019) Drilling of microholes on silicon wafer with ultrasonic workpiece holder. pp 1–7

  27. Zhu Z, To S, Xiao G et al (2016) Rotary spatial vibration-assisted diamond cutting of brittle materials. Precis Eng 44:211–219. https://doi.org/10.1016/j.precisioneng.2015.12.007

    Article  Google Scholar 

  28. Chang SSF, Bone GM (2009) Thrust force model for vibration-assisted drilling of aluminum 6061–T6. Int J Mach Tools Manuf 49:1070–1076. https://doi.org/10.1016/j.ijmachtools.2009.07.011

    Article  Google Scholar 

  29. Liang W, Xu J, Ren W et al (2019) Study on the influence of tool point angle on ultrasonic vibration–assisted drilling of titanium alloy. Int J Adv Manuf Technol 105:1069–1082. https://doi.org/10.1007/s00170-019-04231-x

    Article  Google Scholar 

  30. Yang H, Ding W, Chen Y et al (2019) Drilling force model for forced low frequency vibration assisted drilling of Ti-6Al-4V titanium alloy. Int J Mach Tools Manuf 146:103438. https://doi.org/10.1016/j.ijmachtools.2019.103438

    Article  Google Scholar 

  31. Tian Y, Zou P, Kang D, Fan F (2021) Study on tool wear in longitudinal-torsional composite ultrasonic vibration–assisted drilling of Ti-6Al-4V alloy. Int J Adv Manuf Technol 113:1989–2002. https://doi.org/10.1007/s00170-021-06759-3

    Article  Google Scholar 

  32. Kurniawan R, Xu M, Li CP et al (2022) Numerical analysis in ultrasonic elliptical vibration cutting (UEVC) combined with electrical discharge assistance (EDA) for Ti6Al4V. Int J Adv Manuf Technol 120:471–498. https://doi.org/10.1007/s00170-022-08724-0

    Article  Google Scholar 

  33. Zhang J, Han L, Zhang J et al (2019) Finite element analysis of the effect of tool rake angle on brittle-to-ductile transition in diamond cutting of silicon. Int J Adv Manuf Technol 104:881–891. https://doi.org/10.1007/s00170-019-03888-8

    Article  Google Scholar 

  34. Liu B, Li S, Li R et al (2020) Finite element simulation and experimental research on microcutting mechanism of single crystal silicon. Int J Adv Manuf Technol 110:909–918. https://doi.org/10.1007/s00170-020-05938-y

    Article  Google Scholar 

  35. Cheng Q, Dai C, Miao Q et al (2024) Undeformed chip thickness with composite ultrasonic vibration-assisted face grinding of silicon carbide: modeling, computation and analysis. Precis Eng 86:48–65. https://doi.org/10.1016/j.precisioneng.2023.11.005

    Article  Google Scholar 

  36. Kang M, Gu Y, Lin J et al (2023) Material removal mechanism of non-resonant vibration-assisted magnetorheological finishing of silicon carbide ceramics. Int J Mech Sci 242:107986. https://doi.org/10.1016/j.ijmecsci.2022.107986

    Article  Google Scholar 

  37. Li Y, Garbie M, Hu Y, Cong W (2023) The effects of scratching speed in ultrasonic vibration-assisted single diamond scratching process. Manuf Lett 35:289–296. https://doi.org/10.1016/j.mfglet.2023.08.057

    Article  Google Scholar 

  38. Chen G, Xu J, Wang J et al (2022) Experimental investigation on cavitation effect and surface quality of ultrasonic ‑ assisted micro ‑ hole drilling. Int J AdvManuf Technol 919–936. https://doi.org/10.1007/s00170-022-09193-1

  39. Sui H, Zhang X, Zhang D et al (2017) Feasibility study of high-speed ultrasonic vibration cutting titanium alloy. J Mater Process Technol 247:111–120. https://doi.org/10.1016/j.jmatprotec.2017.03.017

    Article  Google Scholar 

  40. Arcona C, Dow TA (1998) An empirical tool force model for precision machining. J Manuf Sci Eng 120:700. https://doi.org/10.1115/1.2830209

    Article  Google Scholar 

  41. Kang IS, Kim JS, Kim JH et al (2007) A mechanistic model of cutting force in the micro end milling process. J Mater Process Technol 187–188:250–255. https://doi.org/10.1016/j.jmatprotec.2006.11.155

    Article  Google Scholar 

  42. Shaw M (2005) Metal cutting principles. Oxford University Press

    Google Scholar 

  43. Leung TP, Lee WB, Lu XM (1998) Diamond turning of silicon substrates in ductile-regime. J Mater Process Technol 73:42–48. https://doi.org/10.1016/S0924-0136(97)00210-0

    Article  Google Scholar 

  44. Liu H, Xie W, Sun Y et al (2018) Investigations on brittle-ductile cutting transition and crack formation in diamond cutting of mono-crystalline silicon. Int J Adv Manuf Technol 95:317–326. https://doi.org/10.1007/s00170-017-1108-1

    Article  Google Scholar 

  45. Yoshino M, Ogawa Y, Aravindan S (2005) Machining of hard-brittle materials by a single point tool under external hydrostatic pressure. J Manuf Sci Eng 127:837–845. https://doi.org/10.1115/1.2035695

    Article  Google Scholar 

  46. Jaccodine RJ (1963) Surface energy of germanium and silicon. J Electrochem Soc 110:524. https://doi.org/10.1149/1.2425806

    Article  Google Scholar 

  47. Jung ST, Kurniawan R, Kumaran ST et al (2020) Mechanism study of micro-electrical discharge drilling method during micro-dimpling. J Mech Sci Technol 34:2549–2559. https://doi.org/10.1007/s12206-020-0530-8

    Article  Google Scholar 

  48. Korte S, Barnard JS, Stearn RJ, Clegg WJ (2011) Deformation of silicon - insights from microcompression testing at 25–500 °c. Int J Plast 27:1853–1866. https://doi.org/10.1016/j.ijplas.2011.05.009

    Article  Google Scholar 

  49. Chiao YH, Clarke DR (1989) Direct observation of dislocation emission from crack tips in silicon at high temperatures. Acta Metall 37:203–219. https://doi.org/10.1016/0001-6160(89)90279-4

    Article  Google Scholar 

  50. Thaulow C, Schieffer SV, Vatne IR et al (2011) Crack tip opening displacement in atomistic modeling of fracture of silicon. Comput Mater Sci 50:2621–2627. https://doi.org/10.1016/j.commatsci.2011.04.004

    Article  Google Scholar 

  51. Rusnaldy KTJ, Kim HS (2007) Micro-end-milling of single-crystal silicon. Int J Mach Tools Manuf 47:2111–2119. https://doi.org/10.1016/j.ijmachtools.2007.05.003

    Article  Google Scholar 

Download references

Funding

This research was funded by the Ministry of Science and ICT (MSIT) through the Korea Electrotechnology Research Institute’s (KERI) primary research program through the National Research Council of Science and Technology (NST) in 2023. (No. 23A01021). In addition, this work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korean government(MSIT) (RS-2023–00278890).

Author information

Authors and Affiliations

Authors

Contributions

Rendi Kurniawan: writing—original draft, supervision, methodology, and software. Chen Shou: formal analysis, investigation, and data curation. Moran Xu: conceptualization and visualization. Hanwei Teng: investigation and data curation. Jielin Chen: investigation and data curation. Saood Ali: investigation and validation. Pil-Wan Han: funding acquisition and resources. Gandjar Kiswanto: writing—review and editing. Sundaresan Thirumalai Kumaran: writing—review and editing. Tae Jo Ko: writing—review and editing and funding acquisition.

Corresponding authors

Correspondence to Shuo Chen, Moran Xu or Tae Jo Ko.

Ethics declarations

Ethics approval

All authors have confirmed that the paper is an original work which has not been published, part of it or the whole work, and is not being considered for publication elsewhere.

Consent to participate

All authors have agreed to participate and be involved in this paper.

Consent for publication

All authors have agreed with this submission of this paper.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurniawan, R., Chen, S., Xu, M. et al. Understanding the mechanism of ultrasonic vibration-assisted drilling (UVAD) for micro-hole formation on silicon wafers using numerical and analytical techniques. Int J Adv Manuf Technol 132, 1283–1313 (2024). https://doi.org/10.1007/s00170-024-13412-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13412-2

Keywords

Navigation