Skip to main content
Log in

Research status of influence mechanism of surface integrity on fatigue behavior of metal workpieces: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

A Correction to this article was published on 12 March 2024

This article has been updated

Abstract

Machined surface integrity is a comprehensive description of surface quality, which mainly includes the key indexes, such as surface micro-morphology, surface hardening, surface residual stress, and surface microstructure. It has a direct influence on the fatigue performance of specimens. Therefore, a lot of researches have been carried out in-depth, and many results are achieved. Based on the formation mechanism of surface integrity indexes, main achievements of influence mechanism of surface integrity on fatigue behavior of metal specimens are presented and analyzed, and the internal relationship and application range of the mechanisms are clarified. It is further presented that the extremely important factor of surface integrity affecting fatigue performance of specimens is the micro-plastic strain of machined surface, and the contents that need to be further improved in the basic theory of anti-fatigue machining are analyzed. Meanwhile, it is pointed out that establishing a comprehensive model of the influence of surface integrity on fatigue performance based on surface micro-morphology and surface plastic deformation is a focus point, which provides a reference for the further researchers and promotes the application of anti-fatigue machining technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Change history

References

  1. Field M, Kahles JF (1964) The surface integrity of machined-and ground high-strength steels. DMIC Report 210:54–77

    Google Scholar 

  2. Field M, Kahles JF, Cammett JNT (1972) Review of measuring methods for surface integrity. CIRP 21(2):219–238

    Google Scholar 

  3. Feldmann G, Wong CC, Wei W, Haubold T (2014) Application of vibropeening on aero–engine component. Proc CIRP 13:423–428

    Article  Google Scholar 

  4. Davies DP, Jenkins SL, Legg SJ (2014) The effect machining processes can have on the fatigue life and surface integrity of critical helicopter components. Proc CIRP 13:25–30

    Article  Google Scholar 

  5. Zou S, Wu J, Zhang Y, Gong S, Sun G, Ni Z, Cao Z, Che Z, Feng A (2018) Surface integrity and fatigue lives of Ti17 compressor blades subjected to laser shock peening with square spots. Surf Coat Technol 347:398–406

    Article  Google Scholar 

  6. Zhang YK, Lu JZ, Ren XD, Yao HB, Yao HX (2009) Effect of laser shock processing on the mechanical properties and fatigue lives of the turbojet engine blades manufactured by LY2 aluminum alloy. Mater Des 30(5):1697–1703

    Article  Google Scholar 

  7. Prevey PS, Jayaraman N, Ravindranath RA, Shepard M (2010) Mitigation of fretting fatigue damage in blade and disk pressure faces with low plasticity burnishing. Journal of Engineering for Gas Turbines and Power 132(8):082105

    Article  Google Scholar 

  8. Ding X, Huang D, Yan X, Fan J, Qi M, Liu Z (2021) Effect of pneumatic shot peening on the high and low cycle combined fatigue life of K403 turbine blades. Fatigue Fract Eng Mater Struct 44(6):1439–1454

    Article  Google Scholar 

  9. Abdulstaar M, Mhaede M, Wollmann M, Wagner L (2014) Investigating the effects of bulk and surface severe plastic deformation on the fatigue, corrosion behaviour and corrosion fatigue of AA5083. Surf Coat Technol 254:244–251

    Article  Google Scholar 

  10. Wang DK (2023) Research on surface integrity and its influencing factors in the high-speed cutting of typical aluminum/titanium/nickel alloys: a review. Int J Adv Manuf Technol 127(9–10):4915–4942

    Article  Google Scholar 

  11. Holmberg J, Wretland A, Hammersberg P, Berglund J, Suarez A, Beno T (2021) Surface integrity investigations for prediction of fatigue properties after machining of alloy 718. Int J Fatigue 144:106059

    Article  Google Scholar 

  12. Zhu X, Liu P, Zhang C, Liang H, Hua J (2023) Study on surface integrity and fatigue properties of TC4 titanium alloy by surface ultrasonic rolling. Materials 16(2):485

    Article  Google Scholar 

  13. Sun J, Guo YB (2009) A comprehensive experimental study on surface integrity by end milling Ti-6Al-4V. J Mater Process Technol 209(8):4036–4042

    Article  Google Scholar 

  14. Li W, Guo YB, Barkey ME (2011) Tool wear influence on surface integrity and fatigue life of hard milled surfaces [C] //ASME/STLE 2011 International Joint Tribology Conference. American Society of Mechanical Engineers

    Google Scholar 

  15. Hughes JI, Sharman ARC, Ridgway K (2006) The effect of cutting tool material and edge geometry on tool life and workpiece surface integrity. Proc Inst Mech Eng Part B: J Eng Manuf 220(2):93–107

    Article  Google Scholar 

  16. Li W, Guo YB, Barkey ME, Jordon JB (2014) Effect tool wear during end milling on the surface integrity and fatigue life of Inconel 718. Proc CIRP 14:546–551

    Article  Google Scholar 

  17. Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tools Manuf 51(3):250–280

    Article  Google Scholar 

  18. Jawahir IS, Brinksmeier E, M’Saoubi R, Aspinwall DK, Outeiro JC, Meyer D, Umbrello D, Jayal AD (2011) Surface integrity in material removal processes: recent advances. CIRP Ann Manuf Technol 60(2):603–626

    Article  Google Scholar 

  19. Song Y, Yin M, Lei P, Huang S, Yin G, Du Y (2022) Predicting the fatigue life of machined specimen based on its surface integrity parameters. Int J Adv Manuf Technol 119(11–12):8159–8171

    Article  Google Scholar 

  20. Ma S, Li X, Su S (2017) Influence of electroplated wheel wear on GH4169 grinding surface integrity. Aviation Manuf Technol 60(1–2):74–78

    Google Scholar 

  21. Wang Z, Wang H, Li X (2020) Surface integrity of powder metallurgy superalloy FGH96 affected by grinding with electroplated CBN wheel. Proc CIRP 87:204–209

    Article  Google Scholar 

  22. Wang H, Li X, Wang Z, Xu R (2020) Influence of electroplated CBN wheel wear on grinding surface morphology of powder metallurgy superalloy FGH96. Materials 13(4):1005–1018

    Article  Google Scholar 

  23. Hashimoto F, Guo YB, Warren AW (2006) Surface integrity difference between hard turned and ground surfaces and its impact on fatigue life. CIRP Ann 55(1):81–84

    Article  Google Scholar 

  24. Zhang H, Zhao W, Guo Z, Gou R, Li X (2023) Effects of turned and milled surface plastic deformation on fatigue properties of TC4 specimens. Surf Technol 52(2):35–42

    Google Scholar 

  25. Tan L, Yao C, Ren J, Zhang D (2017) Effect of cutter path orientations on cutting forces, tool wear, and surface integrity when ball end milling TC17. Int J Adv Manuf Technol 88(9–12):2589–2602

    Article  Google Scholar 

  26. Li X, Wang Y, Xu R, Yang S, Guan C, Zhou Y (2019) Influence of surface integrity on fatigue behavior of Inconel 718 and Ti6Al4V workpieces with CBN electroplated wheel. Int J Adv Manuf Technol 102(5–8):2345–2356

    Article  Google Scholar 

  27. Klocke F, Welling D, Klink A, Perez R (2014) Quality assessment through in-process monitoring of wire-EDM for fir tree slot production. Proc CIRP 24:97–102

    Article  Google Scholar 

  28. Dai F, Zhou J, Lu J, Luo X (2016) A technique to decrease surface roughness in overlapping laser shock peening. Appl Surf Sci 370:501–507

    Article  Google Scholar 

  29. Maharjan N, Lin Z, Ardi DT, Ji L, Hong M (2020) Laser peening of 420 martensitic stainless steel using ultrashort laser pulses. Proc CIRP 87:279–284

    Article  Google Scholar 

  30. Pacella M (2020) Laser finishing of polycrystalline diamond as strengthening mechanism. Proc CIRP 87:240–244

    Article  Google Scholar 

  31. Trung PQ, Khun NW, Butler DL (2018) Effect of shot peening process on the fatigue life of shot peened low alloy steel. J Eng Mater Technol 140(1):011013

    Article  Google Scholar 

  32. Priyadarsini C, Ramana VSNV, Prabha KA, Swetha S (2019) A review on ball, roller, low plasticity burnishing process. Mater Today: Proc 18:5087–5099

    Google Scholar 

  33. Jayaraman N, Prevey PS, Ravindranath R (2005) Improved damage tolerance of Ti-6Al-4V aero engine blades and vanes using residual compression by design. Final report. Cincinnati: Lambda Research Inc

    Google Scholar 

  34. Prevey PS, Jayaraman N, Ravindranath R, (2010) Fatigue life extension of steam turbine alloys using low plasticity burnishing (LPB). ASME Turbo Expo. Power for Land, Sea, and Air. Glasgow, UK, pp 2277–2287

  35. Gao YK (2011) Improvement of fatigue property in 7050–T7451 aluminum alloy by laser peening and shot peening. Mater Sci Eng, A 528(10–11):3823–3828

    Article  Google Scholar 

  36. Molaiekiya F, Aliakbari Khoei A, Aramesh M, Veldhuis S (2021) Machined surface integrity of Inconel 718 in high-speed dry milling using SiAlON ceramic tools. Int J Adv Manuf Technol 112(7–8):1941–1950

    Article  Google Scholar 

  37. Xu R, Zhou Y, Li X, Yang S, Han K, Wang S (2019) The effect of milling cooling conditions on the surface integrity and fatigue behavior of the GH4169 superalloy. Metals 9(11):1179–1188

    Article  Google Scholar 

  38. Paulo Davim J (2010) Surface integrity in machining [M]. Springer, London

    Book  Google Scholar 

  39. Li X, Wang Z, Yang S, Guo Z, Zhou Y, Han K (2021) Influence of turning tool wear on the surface integrity and anti-fatigue behavior of Ti1023. Adv Mech Eng 13(4):16878140211011278

    Google Scholar 

  40. Li X, Yang S, Lu Z, Zhang D, Zhang X, Jiang X (2020) Influence of ultrasonic peening cutting on surface integrity and fatigue behavior of Ti-6Al-4V specimens. J Mater Process Technol 275:116386–116394

    Article  Google Scholar 

  41. Xu X, Liu D, Zhang X, Zhang X, Liu C, Liu D, Zhang W (2019) Influence of ultrasonic rolling on surface integrity and corrosion fatigue behavior of 7B50-T7751 aluminum alloy. Int J Fatigue 125:237–248

    Article  Google Scholar 

  42. Zhang HX (2008) Research on grinding mechanism and processing parameter of aeroalloy [D]. Beihang University

    Google Scholar 

  43. Du J, Liu ZQ (2012) Research on the white layer formation in hard machining of powder metallurgy superalloy FGH95. Rare Metal Mater Eng 41(2):698–702

    Google Scholar 

  44. Liu Z, Lv S (2014) Thermo-mechanical coupling mechanisms of white layer formation on machined surface of powder metallurgical nickel-based superalloy. J Mech Eng 50(17):186–193

    Article  Google Scholar 

  45. Schwach DW, Guo YB (2006) A fundamental study on the impact of surface integrity by hard turning on rolling contact fatigue. Int J Fatigue 28(12):1838–1844

    Article  Google Scholar 

  46. Ramesh A, Melkote S, Allard L, Riester L, Watkins T (2005) Analysis of white layers formed in hard turning of AISI 52100 steel. Mater Sci Eng: A 390(1–2):88–97

    Article  Google Scholar 

  47. Li X, Qin B, Wang Z, Zhang Y, Yu J (2021) Grinding of fir tree slots of powder metallurgy superalloy FGH96 using profiled electroplated CBN wheel. Int J Adv Manuf Technol 115(1–2):311–317

    Article  Google Scholar 

  48. Suárez A, Veiga F, Polvorosa R, Artaza T, Holmberg J, Lopez de Lacalle L, Wretland A (2019) Surface integrity and fatigue of non-conventional machined Alloy 718. J Manuf Process 48:44–50

    Article  Google Scholar 

  49. Galatolo R, Fanteria D (2017) Influence of turning parameters on the high-temperature fatigue performance of Inconel 718 superalloy. Fatigue Fract Eng Mater Struct 40(12):2019–2031

    Article  Google Scholar 

  50. Maiya PS, Busch DE (1975) Effect of surface roughness on low-cycle fatigue behavior of type 304 stainless steel. Metall and Mater Trans A 6(9):1761–1766

    Article  Google Scholar 

  51. Xiao W, Chen H, Yin Y (2014) Experimental study of surface roughness effect on low cycle fatigue life of Glidcop and Q345. J Exp Mech 29(4):417–425

    Google Scholar 

  52. Zhu L, Deng C, Wang D (2016) Effect of surface roughness on very high cycle fatigue behavior of Ti-6Al-4V alloy. Acta Mech Sinica 52(5):583–591

    Google Scholar 

  53. Chen HT, Liu ZB, Wang XB, Wang Y, Liu SY (2022) Effect of surface integrity on fatigue life of 2024 aluminum alloy subjected to turning. J Manuf Process 83:650–666

    Article  Google Scholar 

  54. Suraratchai M, Limido J, Mabru C, Chieragatti R (2008) Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy. Int J Fatigue 30(12):2119–2126

    Article  Google Scholar 

  55. Yang M, Ren J (1996) The effects of grinding surface integrity on fatigue life of superalloy GH4169. Aviation Precision Manuf Technol 32(6):28–31

    Google Scholar 

  56. Ren J, Huang Q, Zhang Z, Kang R (1991) The influence of machined surface integrity on fatigue life of nickel-base superalloy GH33A. Aeronautical Manuf Technol 5:2–5

    Google Scholar 

  57. Wu DX, Zhang DH, Yao CF (2017) Effect of surface integrity of turned GH4169 superalloy on fatigue performance. J Aeronautical Mater 37(6):59–67

    Google Scholar 

  58. Arola D, Williams CL (2002) Estimating the fatigue stress concentration factor of machined surfaces. Int J Fatigue 24(9):923–930

    Article  Google Scholar 

  59. Wu DX, Zhang DH, Yao CF (2018) Effect of turning and surface polishing treatments on surface integrity and fatigue performance of nickel-based alloy GH4169. Metals 8(7):549

    Article  Google Scholar 

  60. Ås SK, Skallerud B, Tveiten BW (2008) Surface roughness characterization for fatigue life predictions using finite element analysis. Int J Fatigue 30(12):2200–2209

    Article  Google Scholar 

  61. Yao C, Wu D, Jin Q, Huang X, Ren J, Zhang D (2013) Influence of high-speed milling parameter on 3D surface topography and fatigue behavior of TB6 titanium alloy. Trans Nonferrous Metals Soc China 23(3):650–660

    Article  Google Scholar 

  62. Yang D (2017) Milling induced surface integrity and its influence on fatigue life of the titanium alloy Ti-6Al-4V [D]. Shandong University

    Google Scholar 

  63. Zhang G (2010) Effect of roughness on surface stress concentration factor and fatigue life. J Mech Strength 32(1):110–115

    Google Scholar 

  64. Wang X, Huang C, Zou B, Liu G, Zhu H, Wang J (2018) Experimental study of surface integrity and fatigue life in the face milling of Inconel 718. Front Mech Eng 13(2):1–8

    Article  Google Scholar 

  65. Taraov LP, Hyler WS, Letner HR (1958) Effects of grinding direction and of abrasive tumbling on the fatigue limit of hardened steel. Proceedings of American Society for Testing Materials 57:601–622

    Google Scholar 

  66. Itoga H, Tokaji K, Nakajima M, Ko HN (2003) Effect of surface roughness on step-wise S-N characteristics in high strength steel. Int J Fatigue 25(5):379–385

    Article  Google Scholar 

  67. Novovic D, Dewes RC, Aspinwall DK, Voice W, Bowen P (2004) The effect of machined topography and integrity on fatigue life. Int J Mach Tools Manuf 44(2–3):125–134

    Article  Google Scholar 

  68. Denkena B, Böß V, Nespor D, Samp A (2011) Kinematic and stochastic surface topography of machined TiAl6V4-parts by means of ball nose end milling. Proc Eng 19:81–87

    Article  Google Scholar 

  69. Xu R, Zhou Y, Yang S, Li X, Wang H (2019) Research status of influence mechanism of surface integrity on fatigue behavior of workpieces. Aeronautical Manuf Technol 62(14):96–102

    Google Scholar 

  70. Li X, Guan C, Zhao P (2018) Influences of milling and grinding on machined surface roughness and fatigue behavior of GH4169 superalloy workpieces. Chin J Aeronaut 31(6):1399–1405

    Article  Google Scholar 

  71. Nishida SI, Zhou C, Hattori N, Wang S (2007) Fatigue strength improvement of notched structural steels with work hardening. Mater Sci Eng A 468(45):176–183

    Article  Google Scholar 

  72. Josefson BL, Stigh U, Hjelm HE (1995) A nonlinear kinematic hardening model for elastoplastic deformations in grey cast iron. J Eng Mater Technol 117(2):145–150

    Article  Google Scholar 

  73. Xie L, Palmer D, Otto F, Wang Z, Jane Wang Q (2015) Effect of surface hardening technique and case depth on rolling contact fatigue behavior of alloy steels. Tribol Trans 58(2):215–224

    Article  Google Scholar 

  74. Lee KS, Song JH (2006) Estimation methods for strain-life fatigue properties from hardness. Int J Fatigue 28(4):386–400

    Article  Google Scholar 

  75. Suárez A, Veiga F, de Lacalle LN, L, Polvorosa R, Lutze S, Wretland A, (2016) Effects of ultrasonics-assisted face milling on surface integrity and fatigue life of Ni-alloy 718. J Mater Eng Perform 25(11):5076–5086

    Article  Google Scholar 

  76. Li X, Zhao P, Niu Y, Guan C (2017) Influence of finish milling parameters on machined surface integrity and fatigue behavior of Ti1023 workpiece. Int J Adv Manuf Technol 91(1–4):1297–1307

    Article  Google Scholar 

  77. Liu Y, Pang S, Wang X, Xie L (2013) Experimental study on effect of surface integrity on high-strength steel fatigue life. Acta Armamentarii 34(6):759–764

    Google Scholar 

  78. Henriksen EK (1951) Residual stresses in machined surfaces. Trans Am Soc Mech Eng 73(1):69–76

    Article  Google Scholar 

  79. Choi Y (2017) Influence of rake angel on surface integrity and fatigue performance of machined surfaces. Int J Fatigue 94:81–88

    Article  Google Scholar 

  80. Suresh S (1998) Fatigue of materials [M]. Cambridge University Press

    Book  Google Scholar 

  81. Javidi A, Rieger U, Eichlseder W (2008) The effect of machining on the surface integrity and fatigue life. Int J Fatigue 30(10):2050–2055

    Article  Google Scholar 

  82. Sasahara H (2005) The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0.45% C steel. Int J Mach Tools Manuf 45(2):131–136

    Article  Google Scholar 

  83. Pramanik A, Dixit AR, Chattopadhyaya S, Uddin MS, Dong Y, Basak AK, Littlefair G (2017) Fatigue life of machined components. Adv Manuf 5(1):59–76

    Article  Google Scholar 

  84. Kawagoishi N, Chen Q, Kondo E, Goto M, Nisitani H (1999) Influence of cubic boron nitride grinding on the fatigue strengths of carbon steels and a nickel-base superalloy. J Mater Eng Perform 8(2):152–158

    Article  Google Scholar 

  85. Souto-Lebel A, Guillemot N, Lartigue C, Billardon R (2011) Characterization and influence of defect size distribution induced by ball-end finishing milling on fatigue life. Proc Eng 19(1):343–348

    Article  Google Scholar 

  86. Zhang X, Zhang Y, Lu J, Xuan F, Wang Z, Tu S (2010) Improvement of fatigue life of Ti–6Al–4V alloy by laser shock peening. Mater Sci Eng: A 527(15):3411–3415

    Article  Google Scholar 

  87. Chin KS, Idapalapati S, Ardi DT (2019) Fatigue of surface-treated nickel-based superalloy at high temperature. J Mater Eng Perform 28(12):7181–7187

    Article  Google Scholar 

  88. Yang D, Liu Z (2018) Surface integrity generated with peripheral milling and the effect on low-cycle fatigue performance of aeronautic titanium alloy Ti-6Al-4V. The Aeronautical Journal 122(1248):316–332

    Article  Google Scholar 

  89. Prevéy PS (2000) The effect of cold work on the thermal stability of residual compression in surface enhanced IN718. 20th Annual Conference on Heat Treating, ST LOUIS, MO, pp 426-434

  90. James MR (1982) The relaxation of residual stresses during fatigue[M]. Springer, US, Boston, MA

    Book  Google Scholar 

  91. McCLUNG RC (2007) A literature survey on the stability and significance of residual stresses during fatigue. Fatigue Fract Eng Mater Struct 30(3):173–205

    Article  Google Scholar 

  92. Buchanan DJ, Ashbaugh NE, John R (2006) Thermal residual stress relaxation in powder metal IN100 superalloy. J ASTM Int 3(5):JAI12552

    Article  Google Scholar 

  93. Nalla RK, Altenberger I, Noster U, Liu G, Scholtes B, Ritchie RO (2003) On the influence of mechanical surface treatments - deep rolling and laser shock peening - on the fatigue behavior of Ti-6Al-4V at ambient and elevated temperatures. Mater Sci Eng: A 355(1–2):216–230

    Article  Google Scholar 

  94. Wick A, Schulze V, Vöhringer O (2000) Effects of warm peening on fatigue life and relaxation behaviour of residual stresses in AISI 4140 steel. Mater Sci Eng: A 293(1–2):191–197

    Article  Google Scholar 

  95. Ross AS, Morrow JD (1960) Cycle-dependent stress relaxation of A-286 alloy. J Fluids Eng 82(3):654–658

    Google Scholar 

  96. Holzapfel H, Schulze V, Vöhringer O, Macherauch E (1998) Residual stress relaxation in an AISI 4140 steel due to quasistatic and cyclic loading at higher temperatures. Mater Sci Eng: A 248(1–2):9–18

    Article  Google Scholar 

  97. Kim JC, Cheong SK, Noguchi H (2013) Residual stress relaxation and low- and high-cycle fatigue behavior of shot-peened medium-carbon steel. Int J Fatigue 56:114–122

    Article  Google Scholar 

  98. Zhuang WZ, Halford GR (2001) Investigation of residual stress relaxation under cyclic load. Int J Fatigue 23(Supplement 1):31–37

    Article  Google Scholar 

  99. Ren N, Yang HM, Yuan S, Wang Y, Tang S, Zheng L, Ren X, Dai F (2014) High temperature mechanical properties and surface fatigue behavior improving of steel alloy via laser shock peening. Mater Des 53:452–456

    Article  Google Scholar 

  100. Torres MAS, Voorwald HJC (2002) An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel. Int J Fatigue 24(8):877–886

    Article  Google Scholar 

  101. Roland T, Retraint D, Lu K, Lu J (2006) Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scripta Mater 54(11):1949–1954

    Article  Google Scholar 

  102. Zhao X, Xue G, Liu Y (2017) Gradient crystalline structure induced by ultrasonic impacting and rolling and its effect on fatigue behavior of TC11 titanium alloy. Results Phys 7:1845–1851

    Article  Google Scholar 

  103. Tian J, Villegas J, Yuan W, Fielden D, Shaw L, Liaw P, Klarstrom D (2007) A study of the effect of nanostructured surface layers on the fatigue behaviors of a C-2000 superalloy. Mater Sci Eng: A 468:164–170

    Article  Google Scholar 

  104. Zeng Z, Li X, Xu D, Lu L, Gao H, Zhu T (2016) Gradient plasticity in gradient nano-grained metals. Extreme Mech Lett 8:213–219

    Article  Google Scholar 

  105. Lundberg M, Saarimäki J, Moverare JJ, Calmunger M (2017) Surface integrity and fatigue behaviour of electric discharged machined and milled austenitic stainless steel. Mater Charact 124:215–222

    Article  Google Scholar 

  106. Yasuoka M, Wang P, Zhang K, Qiu Z, Kusaka K, Pyoun Y, Murakami R (2013) Improvement of the fatigue strength of SUS304 austenite stainless steel using ultrasonic nanocrystal surface modification. Surf Coat Technol 218:93–98

    Article  Google Scholar 

  107. Villegas JC, Shaw LL, Dai K, Yuan W, Tian J, Liaw PK, Klarstrom DL (2005) Enhanced fatigue resistance of a nickel-based hastelloy induced by a surface nanocrystallization and hardening process. Philos Mag Lett 85(8):427–438

    Article  Google Scholar 

  108. Shaw LL, Tian J, Ortiz AL, Dai K, Villegas JC, Liaw PK, Ren R, Klarstrorn DL (2010) A direct comparison in the fatigue resistance enhanced by surface severe plastic deformation and shot peening in a C-2000 superalloy. Mater Sci Eng: A 527(4):986–994

    Article  Google Scholar 

  109. Dai K, Shaw LL (2008) Analysis of fatigue resistance improvements via surface severe plastic deformation. Int J Fatigue 30(8):1398–1408

    Article  Google Scholar 

  110. Zhou L, Long C, He W, Tian L, Jia W (2018) Improvement of high-temperature fatigue performance in the nickel-based alloy by LSP-induced surface nanocrystallization. J Alloy Compd 744:156–164

    Article  Google Scholar 

  111. Zhao X, Zhou H, Liu Y (2018) Effect of shot peening on the fatigue properties of nickel-based superalloy GH4169 at high temperature. Results Phys 11:452–460

    Article  Google Scholar 

  112. Deng H, Zheng W, Song Z, Cen Q, Feng H (2015) Effect of cold deformation on microstructure and mechanical behavior of 0Cr25Ni35AlTi. J Iron Steel Res 27(6):67–72

    Google Scholar 

  113. Li X, Guo Z, Yang S, Zhang H, Wang Z (2022) Study on the effect of milling surface plastic deformation on fatigue performance of 20Cr and TC17 specimens. Metals 12(5):736

    Article  Google Scholar 

  114. Ren J, Huang Q (1993) The influence of machined surface roughness on fatigue life of high temperature alloy GH33A. Aeronautical Manuf Technol 5:2–7

    Google Scholar 

  115. Klotz T, Delbergue D, Bocher P, Lévesque M (2018) Surface characteristics and fatigue behavior of shot peened Inconel 718. Int J Fatigue 110:10–21

    Article  Google Scholar 

  116. Ohnistova P, Piska M, Petrenec M, Dluhos J, Hornikova J, Sandera P (2019) Fatigue life of 7475–T7351 aluminum after local severe plastic deformation caused by machining. Materials 12(21):3605

    Article  Google Scholar 

  117. Wang X, Hu Y, Fu S, Tang Z, Song Y, Zhao Z (2018) Effect of shot peening intensity on surface integrity and high- temperature fatigue performance of TC17 and GH4169 alloys. Heat Treat Met 43(1):67–71

    Google Scholar 

Download references

Funding

This study was co-supported by Natural Science Foundation of China (Grant No. 51875028).

Author information

Authors and Affiliations

Authors

Contributions

Xun Li and Baorui Du mainly contributed to the study conception and design. Material preparation, references classifying, and analysis were performed by Jun Yao, Ning Zhang, and Ruijie Gou. The first draft of the manuscript was written by Yao Jun and Li Xun. All authors commented on previous versions of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Xun Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Li, X., Du, B. et al. Research status of influence mechanism of surface integrity on fatigue behavior of metal workpieces: a review. Int J Adv Manuf Technol 131, 3401–3419 (2024). https://doi.org/10.1007/s00170-024-13195-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13195-6

Keywords

Navigation