Skip to main content

Advertisement

Log in

A review on fused deposition modeling materials with analysis of key process parameters influence on mechanical properties

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Fused deposition modeling (FDM) also called fused filament fabrication (FFF) is the most used additive manufacturing (AM) technology. The growing impact of AM is due to its various advantages and its applicability to many domains. Many research works have focused on the improvements of FDM technique and optimization of the mechanical properties in order to fabricate parts that can be used in realm industrial applications. In the present work, a review of materials used in the FDM process is proposed together with an analysis of the key parameters affecting their mechanical behaviors. In this framework, FDM materials have been classified into three groups: standard, composite, and smart materials. Previous works have clearly shown that the process parameters have a greater influence on parts made with standard materials than on those made with composites. The effect of the process parameters such as air gap, layer thickness, build orientation, raster orientation, and contour number is discussed in regard to the mechanical solicitations: tensile and compression, three- or four-point bending tests and fatigue. The impact of these process parameters on different material categories is also analyzed. This reveals the specificities related to each materials group. This work can be considered like a global insight for the comprehension of the process—structure—mechanical property relations of common FDM materials. Synthetic remarks and recommendations are proposed for future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B Eng 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  Google Scholar 

  2. Mohamed OA, Masood SH, Bhowmik JL, Nikzad M, Azadmanjiri J (2016) Effect of process parameters on dynamic mechanical performance of FDM PC/ABS printed parts through design of experiment. J Mater Eng Perform 25:2922–2935. https://doi.org/10.1007/s11665-016-2157-6

    Article  Google Scholar 

  3. Dey A, Yodo N (2019) A systematic survey of FDM process parameter optimization and their influence on part characteristics. J Manuf Mater Process 3. https://doi.org/10.3390/jmmp3030064

  4. Shubham P, Sikidar A, Chand T (2016) The influence of layer thickness on mechanical properties of the 3D printed ABS polymer by fused deposition modeling. Key Eng Mater 706:63–67. https://doi.org/10.4028/www.scientific.net/KEM.706.63

    Article  Google Scholar 

  5. Dilberoglu UM, Gharehpapagh B, Yaman U, Dolen M (2017) The role of additive manufacturing in the era of Industry 4.0. Procedia Manuf 11:545–554. https://doi.org/10.1016/j.promfg.2017.07.148

    Article  Google Scholar 

  6. Gibson I, Rosen D, Stucker B (2014) Additive manufacturing technologies. https://doi.org/10.1007/978-1-4939-2113-3

  7. Boparai KS, Singh R (2017) Advances in fused deposition modelling. Ref Modul Mater Sci Mater Eng 1–10. https://doi.org/10.1016/b978-0-12-803581-8.04166-7

  8. Gardan J (2019) Smart materials in additive manufacturing: state of the art and trends. Virtual Phys Prototyp 14:1–18. https://doi.org/10.1080/17452759.2018.1518016

    Article  Google Scholar 

  9. Crump SS (1992) U.S. Patent No. 5,121,329. Patent and Trademark Office, Washington, DC

  10. Jha K, Narasimhulu A (2018) A critical review of process parameters of fused deposition modelling. J Mater Sci Mech Eng 5:138–141

    Google Scholar 

  11. Mohamed OA, Masood SH, Bhowmik JL (2015) Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 3:42–53. https://doi.org/10.1007/s40436-014-0097-7

    Article  Google Scholar 

  12. Popescu D, Zapciu A, Amza C, Baciu F, Marinescu R (2018) FDM process parameters influence over the mechanical properties of polymer specimens: a review. Polym Test 69:157–166. https://doi.org/10.1016/j.polymertesting.2018.05.020

    Article  Google Scholar 

  13. Li N, Huang S, Zhang G, Qin R, Liu W, Xiong H, Shi G, Blackburn J (2019) Progress in additive manufacturing on new materials: a review. J Mater Sci Technol 35:242–269. https://doi.org/10.1016/j.jmst.2018.09.002

    Article  Google Scholar 

  14. Fuenmayor E, Forde M, Healy AV, Devine DM, Lyons JG, McConville C, Major I (2018) Material considerations for fused-filament fabrication of solid dosage forms. Pharmaceutics 10:1–27. https://doi.org/10.3390/pharmaceutics10020044

    Article  Google Scholar 

  15. Condruz MR, Paraschiv A, Puscasu C (2018) Heat treatment influence on hardness and microstructure of ADAM Manufactured 17–4 Ph, Turbo. V 4–11. https://www.researchgate.net/publication/332423408

  16. Galati M, Minetola P (2019) Analysis of density, roughness, and accuracy of the atomic diffusion additive manufacturing (ADAM) Process for metal parts. Materials (Basel) 12:4122. https://doi.org/10.3390/ma12244122

    Article  Google Scholar 

  17. Bouaziz MA, Marae Djouda J, Chemhki M, Rambaudon M, Kauffmann J, Hild F (2021) Heat treatment effect on 17–4PH stainless steel manufactured by atomic diffusion additive manufacturing (ADAM). Procedia CIRP 104:935–938. https://doi.org/10.1016/j.procir.2021.11.157

    Article  Google Scholar 

  18. Chemkhi M, Djouda JM, Bouaziz MA, Kauffmann J, Hild F, Retraint D (2021) Effects of mechanical post-treatments on additive manufactured 17–4PH Stainless steel produced by bound powder extrusion. CIRP Ann – Manuf Technol 00:0–4

  19. Diamant J, David S, Williams MC (1982) The mechanical properties of styrene-butadiene-styrene (SBS) triblock copolymer blends with polystyrene (PS) and styrene-butadiene copolymer (SBR). Polym Eng Sci 22:673–683

    Article  Google Scholar 

  20. Sidorowicz M (2017) Verification of the prototype: fire engine’s manifold 3D printout, 3DGence. 3dgence.com

  21. Ergene B, Şekeroğlu İ, Bolat Ç, Yalçın B (2021) An experimental investigation on mechanical performances of 3D printed lightweight ABS pipes with different cellular wall thickness. J Mech Eng Sci 15:8169–8177. https://doi.org/10.15282/jmes.15.2.2021.16.0641

    Article  Google Scholar 

  22. Bartolomé E, Bozzo B, Sevilla P, Martínez-Pasarell O, Puig T, Granados X (2017) ABS 3D printed solutions for cryogenic applications. Cryogenics (Guildf) 82:30–37. https://doi.org/10.1016/j.cryogenics.2017.01.005

    Article  Google Scholar 

  23. Bates-Green K, Howie T (2017) Materials for 3D printing by fused deposition. Technical education in additive manufacturing and materials 1–21

  24. Schmitt M, Mehta RM, Kim IY (2020) Additive manufacturing infill optimization for automotive 3D-printed ABS components. Rapid Prototyp J 26:89–99. https://doi.org/10.1108/RPJ-01-2019-0007

    Article  Google Scholar 

  25. Yadav DK, Srivastava R, Dev S (2019) Design & fabrication of ABS part by FDM for automobile application. Mater Today Proc 26:2089–2093. https://doi.org/10.1016/j.matpr.2020.02.451

    Article  Google Scholar 

  26. AL-Hasni S, Santori G (2020) 3D printing of vacuum and pressure tight polymer vessels for thermally driven chillers and heat pumps. Vacuum 171:109017. https://doi.org/10.1016/j.vacuum.2019.109017

    Article  Google Scholar 

  27. Jain PK, Jain PK (2020) Use of 3D printing for home applications: a new generation concept. Mater Today Proc 43:605–607. https://doi.org/10.1016/j.matpr.2020.12.145

    Article  Google Scholar 

  28. Gao G, Xu F, Xu J, Liu Z (2022) Study of material color influences on mechanical characteristics of fused deposition modeling parts. Materials (Basel) 15:1–15. https://doi.org/10.3390/ma15197039

    Article  Google Scholar 

  29. Taubner V, Shishoo R (2001) Influence of processing parameters on the degradation of poly(L-lactide) during extrusion. J Appl Polym Sci. https://doi.org/10.1002/1097-4628(20010321)79:12%3c2128::AID-APP1020%3e3.0.CO;2-#

  30. Baptista R, Guedes M (2021) Morphological and mechanical characterization of 3D printed PLA scaffolds with controlled porosity for trabecular bone tissue replacement. Mater Sci Eng C 118:111528. https://doi.org/10.1016/j.msec.2020.111528

    Article  Google Scholar 

  31. Serra T, Mateos-Timoneda MA, Planell JA, Navarro M (2013) 3D printed PLA-based scaffolds: a versatile tool in regenerative medicine. Organogenesis 9:239–244. https://doi.org/10.4161/org.26048

    Article  Google Scholar 

  32. Joseph TM, Kallingal A, Suresh AM, Mahapatra DK, Hasanin MS, Haponiuk J, Thomas S (2023) 3D printing of polylactic acid: recent advances and opportunities. Int J Adv Manuf Technol 125:1015–1035. https://doi.org/10.1007/s00170-022-10795-y

    Article  Google Scholar 

  33. Bassand C, Benabed L, Charlon S, Verin J, Freitag J, Siepmann F, Soulestin J, Siepmann J (2023) 3D printed PLGA implants: APF DDM vs. FDM. J Control Release 353:864–874. https://doi.org/10.1016/j.jconrel.2022.11.052

    Article  Google Scholar 

  34. Mohammadi-Zerankeshi M, Alizadeh R (2023) 3D-printed PLA-Gr-Mg composite scaffolds for bone tissue engineering applications. J Mater Res Technol 22:2440–2446. https://doi.org/10.1016/j.jmrt.2022.12.108

    Article  Google Scholar 

  35. DeStefano V, Khan S, Tabada A (2020) Applications of PLA in modern medicine. Eng Regen 1:76–87. https://doi.org/10.1016/j.engreg.2020.08.002

    Article  Google Scholar 

  36. Caminero MÁ, Chacón JM, García-Plaza E, Núñez PJ, Reverte JM, Becar JP (2019) Additive manufacturing of PLA-based composites using fused filament fabrication: Effect of graphene nanoplatelet reinforcement on mechanical properties, dimensional accuracy and texture. Polymers (Basel) 11. https://doi.org/10.3390/polym11050799

  37. Zhang H, Wang M, Wu R, Guo J, Sun A, Li Z, Ye R, Xu G, Cheng Y (2023) From materials to clinical use: advances in 3D-printed scaffolds for cartilage tissue engineering. Phys Chem Chem Phys. https://doi.org/10.1039/d3cp00921a

    Article  Google Scholar 

  38. Cojocaru V, Frunzaverde D, Miclosina CO, Marginean G (2022) The influence of the process parameters on the mechanical properties of PLA specimens produced by fused filament fabrication—a review. Polymers (Basel) 14. https://doi.org/10.3390/polym14050886.

  39. García E, Núñez PJ, Chacón JM, Caminero MA, Kamarthi S (2020) Comparative study of geometric properties of unreinforced PLA and PLA-graphene composite materials applied to additive manufacturing using FFF technology. Polym Test 91. https://doi.org/10.1016/j.polymertesting.2020.106860

  40. Rodríguez-Panes A, Claver J, Camacho AM (2018) The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: a comparative analysis. Materials (Basel) 11. https://doi.org/10.3390/ma11081333

  41. Bustillos J, Montero D, Nautiyal P, Loganathan A, Boesl B, Agarwal A (2018) Integration of graphene in poly (lactic) acid by 3D printing to develop creep and wear-resistant hierarchical nanocomposites. Polym Compos 39:3877–3888

    Article  Google Scholar 

  42. Song Y, Li Y, Song W, Yee K, Lee K-Y, Tagarielli VL (2017) Measurements of the mechanical response of unidirectional 3D-printed PLA. Mater Des 123:154–164

    Article  Google Scholar 

  43. Harris M, Potgieter J, Ray S, Archer R, Arif KM (2020) Polylactic acid and high-density polyethylene blend: characterization and application in additive manufacturing. J Appl Polym Sci 137:1–18. https://doi.org/10.1002/app.49602

    Article  Google Scholar 

  44. El Magri A, El Mabrouk K, Vaudreuil S, Ebn Touhami M (2019) Mechanical properties of CF-reinforced PLA parts manufactured by fused deposition modelling. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705719847244

  45. Akhoundi B, Behravesh AH, BagheriSaed A (2019) Improving mechanical properties of continuous fiber-reinforced thermoplastic composites produced by FDM 3D printer. J Reinf Plast Compos 38:99–116. https://doi.org/10.1177/0731684418807300

    Article  Google Scholar 

  46. Haleem A, Javaid M (2019) Polyether ether ketone (PEEK) and its 3D printed implants applications in medical field: an overview. Clin Epidemiol Glob Heal 7:571–577. https://doi.org/10.1016/j.cegh.2019.01.003

    Article  Google Scholar 

  47. Tseng JW, Liu CY, Yen YK, Belkner J, Bremicker T, Liu BH, Sun TJ, Wang AB (2018) Screw extrusion-based additive manufacturing of PEEK. Mater Des 140:209–221. https://doi.org/10.1016/j.matdes.2017.11.032

    Article  Google Scholar 

  48. Zhang H, Hui J, Lv J, Lee CH, Yan Z, Jie Wang J, Guo L, Xu Z (2023) A novel method to combine fused deposition modelling and inkjet printing in manufacturing multifunctional parts for aerospace application. J Mater Res Technol 24:4405–4426. https://doi.org/10.1016/j.jmrt.2023.04.059

    Article  Google Scholar 

  49. Shi Y, Deng T, Peng Y, Qin Z, Ramalingam M, Pan Y, Chen C, Zhao F, Cheng L, Liu J (2023) Effect of surface modification of PEEK artificial phalanx by 3D printing on its biological activity. Coatings 13:400. https://doi.org/10.3390/coatings13020400

    Article  Google Scholar 

  50. Wang R, Cheng KJ, Advincula RC, Chen Q (2019) On the thermal processing and mechanical properties of 3D-printed polyether ether ketone. MRS Commun 9:1046–1052. https://doi.org/10.1557/mrc.2019.86

    Article  Google Scholar 

  51. Geng P, Zhao J, Wu W, Ye W, Wang Y, Wang S, Zhang S (2019) Effects of extrusion speed and printing speed on the 3D printing stability of extruded PEEK filament. J Manuf Process 37:266–273. https://doi.org/10.1016/j.jmapro.2018.11.023

    Article  Google Scholar 

  52. Petersmann S, Spoerk M, Van De Steene W, Üçal M, Wiener J, Pinter G, Arbeiter F (2020) Mechanical properties of polymeric implant materials produced by extrusion-based additive manufacturing. J Mech Behav Biomed Mater 104:103611. https://doi.org/10.1016/j.jmbbm.2019.103611

    Article  Google Scholar 

  53. Vaezi M, Yang S (2015) Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual Phys Prototyp 10:123–135. https://doi.org/10.1080/17452759.2015.1097053

    Article  Google Scholar 

  54. Oladapo BI, Zahedi SA, Chong S, Omigbodun FT, Malachi IO (2020) 3D printing of surface characterisation and finite element analysis improvement of PEEK-HAP-GO in bone implant. Int J Adv Manuf Technol 106:829–841. https://doi.org/10.1007/s00170-019-04618-w

    Article  Google Scholar 

  55. Jiang CP, Cheng YC, Lin HW, Chang YL, Pasang T, Lee SY (2022) Optimization of FDM 3D printing parameters for high strength PEEK using the Taguchi method and experimental validation. Rapid Prototyp J 28:1260–1271. https://doi.org/10.1108/RPJ-07-2021-0166

    Article  Google Scholar 

  56. Puppi D, Morelli A, Bello F, Valentini S, Chiellini F (2018) Additive manufacturing of poly(methyl methacrylate) biomedical implants with dual-scale porosity. Macromol Mater Eng 303:1–9. https://doi.org/10.1002/mame.201800247

    Article  Google Scholar 

  57. Velu R, Singamneni S (2015) Evaluation of the influences of process parameters while selective laser sintering PMMA powders. 229:603–613.https://doi.org/10.1177/0954406214538012

  58. Espalin D, Arcaute K, Rodriguez D, Medina F, Posner M, Wicker R (2010) Fused deposition modeling of patient-specific polymethylmethacrylate implants. Rapid Prototyp J 3:164–173. https://doi.org/10.1108/13552541011034825

    Article  Google Scholar 

  59. Mohan N, Senthil P, Vinodh S, Jayanth N (2017) A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual Phys Prototyp 12:47–59. https://doi.org/10.1080/17452759.2016.1274490

    Article  Google Scholar 

  60. Marin E, Boschetto F, Zanocco M, Honma T, Zhu W, Pezzotti G (2021) Explorative study on the antibacterial effects of 3D-printed PMMA/nitrides composites. Mater Des 206:109788. https://doi.org/10.1016/j.matdes.2021.109788

    Article  Google Scholar 

  61. Peltola MJ, Vallittu PK, Vuorinen V, Aho AAJ, Puntala A, Aitasalo KMJ (2012) Novel composite implant in craniofacial bone reconstruction. 623–628. https://doi.org/10.1007/s00405-011-1607-x

  62. Liga A, Morton JAS, Kersaudy M (2016) Safe and cost ‑ effective rapid ‑ prototyping of multilayer PMMA microfluidic devices.https://doi.org/10.1007/s10404-016-1823-1

  63. Jaiganesh V, Christopher AA, Mugilan E (2014) Manufacturing of PMMA cam shaft by rapid prototyping. Procedia Eng 97:2127–2135. https://doi.org/10.1016/j.proeng.2014.12.456

    Article  Google Scholar 

  64. Kotz F, Mader M, Dellen N, Risch P, Kick A, Helmer D, Rapp BE (2020) Fused deposition modeling of microfluidic chips in polymethylmethacrylate. Micromachines 11(9):873. https://doi.org/10.3390/mi11090873

    Article  Google Scholar 

  65. Babo S, Ferreira JL, Ramos AM, Micheluz A, Pamplona M, Casimiro MH, Ferreira M, Jo M (n.d.) Characterization and long-term stability of historical PMMA : impact of additives and acrylic sheet Industrial Production Processes

  66. Polzin C, Spath S, Seitz H (2013) Characterization and evaluation of a PMMA-based 3D printing process. Rapid Prototyp J 19:37–43. https://doi.org/10.1108/13552541311292718

    Article  Google Scholar 

  67. Bressan LP, Adamo CB, Quero RF, De Jesus DP, Da Silva JAF (2019) A simple procedure to produce FDM-based 3D-printed microfluidic devices with an integrated PMMA optical window. Anal Methods 11:1014–1020. https://doi.org/10.1039/c8ay02092b

    Article  Google Scholar 

  68. Tan WS, Chua CK, Chong TH, Fane AG, Jia A, See W, Chua CK, Chong TH, Fane AG, Jia A (2016) 3D printing by selective laser sintering of polypropylene feed channel spacers for spiral wound membrane modules for the water industry. 2759. https://doi.org/10.1080/17452759.2016.1211925

  69. Spoerk M, Arbeiter F, Raguž I, Weingrill G, Fischinger T, Traxler G, Schuschnigg S, Cardon L, Holzer C (2018) Polypropylene filled with glass spheres in extrusion-based additive manufacturing : effect of filler size and printing chamber temperature. 1800179. https://doi.org/10.1002/mame.201800179

  70. Dong M, Zhang S, Gao D, Chou B (2019) The study on polypropylene applied in fused deposition modelling. AIP Conf Proc 2065.https://doi.org/10.1063/1.5088317

  71. Silva AF, Carneiro OS, Gomes R (1896) 3D printing of polypropylene using the fused filament fabrication technique. AIP Conf Proc 2017:1–5. https://doi.org/10.1063/1.5008040

    Article  Google Scholar 

  72. Carneiro OS, Silva AF, Gomes R (2015) Fused deposition modeling with polypropylene. Mater Des 83:768–776. https://doi.org/10.1016/j.matdes.2015.06.053

    Article  Google Scholar 

  73. Jin M, Neuber C, Schmidt H (2020) Tailoring polypropylene for extrusion-based additive manufacturing. Addit Manuf 33:101101. https://doi.org/10.1016/j.addma.2020.101101

    Article  Google Scholar 

  74. Schumacher C, Schöppner V, Fels C (2019) A method to evaluate the process-specific warpage for different polymers in the FDM process. AIP Conf Proc 2065. https://doi.org/10.1063/1.5088315

  75. Sagias VD, Giannakopoulos KI, Stergiou C (2018) Mechanical properties of 3D printed polymer specimens. Procedia Struct Integr 10:85–90

    Article  Google Scholar 

  76. Kumar N, Jain PK, Tandon P, Mohan P (2018) ScienceDirect Experimental investigations on suitability of polypropylene ( PP ) and ethylene vinyl acetate ( EVA ) in additive manufacturing. Mater Today Proc 5:4118–4127. https://doi.org/10.1016/j.matpr.2017.11.672

    Article  Google Scholar 

  77. Swennen GRJ, Pottel L, Haers PE (2020) Custom-made 3D-printed face masks in case of pandemic crisis situations with a lack of commercially available FFP2/3 masks. Int J Oral Maxillofac Surg 49:673–677. https://doi.org/10.1016/j.ijom.2020.03.015

    Article  Google Scholar 

  78. Keller M, Guebeli A, Thieringer F, Honigmann P (2021) Overview of in-hospital 3D printing and practical applications in hand surgery. Biomed Res Int 2021:4650245. https://doi.org/10.1155/2021/4650245

    Article  Google Scholar 

  79. Kumar N (2019) Analysing the influence of raster angle , layer thickness and infill rate on the compressive behaviour of EVA through CNC-assisted fused layer modelling process. 0:1–10. https://doi.org/10.1177/0954406219889076

  80. Geng Y, He H, Liu H, Jing H (2020) Preparation of polycarbonate/poly(lactic acid) with improved printability and processability for fused deposition modeling. Polym Adv Technol 31:2848–2862. https://doi.org/10.1002/pat.5013

    Article  Google Scholar 

  81. Salazar-Martín AG, Pérez MA, García-Granada AA, Reyes G, Puigoriol-Forcada JM (2018) A study of creep in polycarbonate fused deposition modelling parts. Mater Des 141:414–425. https://doi.org/10.1016/j.matdes.2018.01.008

    Article  Google Scholar 

  82. Cole DP, Gardea F, Henry TC, Seppala JE, Garboczi EJ, Migler KD, Shumeyko CM, Westrich JR, Orski SV, Gair JL (2020) AMB2018 - 03: benchmark physical property measurements for material extrusion additive manufacturing of polycarbonate. Integr Mater Manuf Innov. https://doi.org/10.1007/s40192-020-00188-y

    Article  Google Scholar 

  83. Messimer SL, Patterson AE, Muna N, Deshpande AP (n.d.) Characterization and processing behavior of heated aluminum-polycarbonate composite build plates for the FDM additive manufacturing process. https://doi.org/10.3390/jmmp2010012

  84. Shemelya C, Cedillos F, Aguilera E, Maestas E, Ramos J, Espalin D, Muse D, Wicker R, MacDonald E (2013) 3D printed capacitive sensors. Proc IEEE Sensors 1–4. https://doi.org/10.1109/ICSENS.2013.6688247

  85. Park SJ, Lee JE, Lee HB, Park J, Lee NK, Son Y, Park SH (2020) 3D printing of bio-based polycarbonate and its potential applications in ecofriendly indoor manufacturing. Addit Manuf 31:100974. https://doi.org/10.1016/j.addma.2019.100974

    Article  Google Scholar 

  86. Masood SH, Mau K, Song WQ (2010) Tensile properties of processed FDM polycarbonate material. Mater Sci Forum 654–656:2556–2559. https://doi.org/10.4028/www.scientific.net/MSF.654-656.2556

    Article  Google Scholar 

  87. Zhou YG, Su B, Turng LS (2017) Deposition-induced effects of isotactic polypropylene and polycarbonate composites during fused deposition modeling. Rapid Prototyp J 23:869–880. https://doi.org/10.1108/RPJ-12-2015-0189

    Article  Google Scholar 

  88. Reich MJ, Woern AL, Tanikella NG, Pearce JM (2019) Mechanical properties and applications of recycled polycarbonate particle material extrusion-based additive manufacturing. Materials (Basel) 12:1642

    Article  Google Scholar 

  89. Pal AK, Mohanty AK, Misra M (2021) Additive manufacturing technology of polymeric materials for customized products: recent developments and future prospective. RSC Adv 11:36398–36438. https://doi.org/10.1039/d1ra04060j

    Article  Google Scholar 

  90. Wang K, Xie G, Xiang J, Li T, Peng Y, Wang J, Zhang H (2022) Materials selection of 3D printed polyamide-based composites at different strain rates: a case study of automobile front bumpers. J Manuf Process 84:1449–1462. https://doi.org/10.1016/j.jmapro.2022.11.024

    Article  Google Scholar 

  91. Zhang X, Fan W, Liu T (2020) Fused deposition modeling 3D printing of polyamide-based composites and its applications. Compos Commun 21:100413. https://doi.org/10.1016/j.coco.2020.100413

    Article  Google Scholar 

  92. Dezaki ML, Khairol M, Mohd A (2021) An overview of fused deposition modelling (FDM): research, development and process optimisation. 3:562–582. https://doi.org/10.1108/RPJ-08-2019-0230

  93. Zhang Y, Purssell C, Mao K, Leigh S (2020) A physical investigation of wear and thermal characteristics of 3D printed nylon spur gears. Tribol Int 141:105953. https://doi.org/10.1016/j.triboint.2019.105953

    Article  Google Scholar 

  94. Peng X, He H, Jia Y, Liu H, Geng Y, Huang B, Luo C (2019) Shape memory effect of three-dimensional printed products based on polypropylene/nylon 6 alloy. J Mater Sci 54:9235–9246. https://doi.org/10.1007/s10853-019-03366-2

    Article  Google Scholar 

  95. Gao X, Zhang D (2019) Fused deposition modeling with polyamide 1012.https://doi.org/10.1108/RPJ-09-2018-0258

  96. Rahim TNAT, Abdullah AM, MdAkil H (2019) Recent developments in fused deposition modeling-based 3D printing of polymers and their composites. Polym Rev 59:589–624. https://doi.org/10.1080/15583724.2019.1597883

    Article  Google Scholar 

  97. Alghamdi SS, John S, Choudhury NR, Dutta NK (2021) Additive manufacturing of polymer materials: progress, promise and challenges. Polymers (Basel) 13:1–39. https://doi.org/10.3390/polym13050753

    Article  Google Scholar 

  98. Sood AK, Ohdar RK, Mahapatra SS (2009) Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method. Mater Des 30:4243–4252. https://doi.org/10.1016/j.matdes.2009.04.030

    Article  Google Scholar 

  99. Black HT, Celina MC, Mcelhanon JR (2016) Additive manufacturing of polymers: materials opportunities and emerging applications. https://doi.org/10.2172/1561754

    Article  Google Scholar 

  100. Hsueh MH, Lai CJ, Chung CF, Wang SH, Huang WC, Pan CY, Zeng YS, Hsieh CH (2021) Effect of printing parameters on the tensile properties of 3d-printed polylactic acid (Pla) based on fused deposition modeling. Polymers (Basel) 13:2387. https://doi.org/10.3390/polym13142387

    Article  Google Scholar 

  101. Corapi D, Morettini G, Pascoletti G, Zitelli C (2019) Characterization of a polylactic acid (PLA) produced by fused deposition modeling (FDM) technology. Procedia Struct Integr 24:289–295. https://doi.org/10.1016/j.prostr.2020.02.026

    Article  Google Scholar 

  102. Algarni M, Ghazali S (2021) Comparative study of the sensitivity of pla, abs, peek, and petg’s mechanical properties to fdm printing process parameters. Crystals 11(8):995. https://doi.org/10.3390/cryst11080995

    Article  Google Scholar 

  103. Tan LJ, Zhu W, Zhou K (2020) Recent progress on polymer materials for additive manufacturing. Adv Funct Mater 30:1–54. https://doi.org/10.1002/adfm.202003062

    Article  Google Scholar 

  104. Arif MF, Kumar S, Varadarajan KM, Cantwell WJ (2018) Performance of biocompatible PEEK processed by fused deposition additive manufacturing. Mater Des 146:249–259. https://doi.org/10.1016/j.matdes.2018.03.015

    Article  Google Scholar 

  105. Yakout M, Elbestawi MA (2017) Additive manufacturing of composite materials: an overview, vol 29.  In Proceedings of the 6th International Conference on Virtual Machining Process Technology (VMPT), Montréal, QC, Canada

  106. Yasa E, Ersoy K (2018) Additive manufacturing of polymer matrix composites. Aircr Technol. https://doi.org/10.5772/intechopen.75628

    Article  Google Scholar 

  107. Ismail KI, Yap TC, Ahmed R (2022) 3D-printed fiber-reinforced polymer composites by fused deposition modelling (FDM): fiber length and fiber implementation techniques. Polymers (Basel) 14:1–36

    Article  Google Scholar 

  108. Zhang H, Huang T, Jiang Q, He L, Bismarck A, Hu Q (2021) Recent progress of 3D printed continuous fiber reinforced polymer composites based on fused deposition modeling : a review. J Mater Sci 56:12999–13022. https://doi.org/10.1007/s10853-021-06111-w

  109. Krajangsawasdi N, Blok LG, Hamerton I, Longana ML, Woods BKS, Ivanov DS (2021) Fused deposition modelling of fibre reinforced polymer composites: a parametric review. J Compos Sci 5. https://doi.org/10.3390/jcs5010029

  110. Iwai Y, Honda T, Miyajima T, Iwasaki Y, Surappa MK, Xu JF (2000) Dry sliding wear behavior of Al2O3 fiber reinforced aluminum composites. Compos Sci Technol 60:1781–1789. https://doi.org/10.1016/S0266-3538(00)00068-3

    Article  Google Scholar 

  111. Salem Bala A, Bin Wahab S, Binti Ahmad M (2016) Elements and materials improve the FDM products: a review. Adv Eng Forum 16:33–51. https://doi.org/10.4028/www.scientific.net/aef.16.33

    Article  Google Scholar 

  112. Postiglione G, Natale G, Griffini G, Levi M, Turri S (2015) Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling. Compos Part A Appl Sci Manuf 76:110–114. https://doi.org/10.1016/j.compositesa.2015.05.014

    Article  Google Scholar 

  113. Velu R, Raspall F, Singamneni S (2018) 3D printing technologies and composite materials for structural applications. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102177-4.00008-2

    Book  Google Scholar 

  114. Wang P, Zou B, Ding S, Huang C, Shi Z, Ma Y, Yao P (2020) Preparation of short CF/GF reinforced PEEK composite filaments and their comprehensive properties evaluation for FDM-3D printing. Compos Part B Eng 198:108175. https://doi.org/10.1016/j.compositesb.2020.108175

    Article  Google Scholar 

  115. Azarov AV, Antonov FK, Golubev MV, Khaziev AR, Ushanov SA (2019) Composite 3D printing for the small size unmanned aerial vehicle structure. Compos Part B Eng 169:157–163. https://doi.org/10.1016/j.compositesb.2019.03.073

    Article  Google Scholar 

  116. Buj-Corral I, Tejo-Otero A (2022) 3D printing of bioinert oxide ceramics for medical applications. J Funct Biomater 13. https://doi.org/10.3390/jfb13030155

  117. Ahlhelm M, Günther P, Scheithauer U, Schwarzer E, Günther A, Slawik T, Moritz T, Michaelis A (2016) Innovative and novel manufacturing methods of ceramics and metal-ceramic composites for biomedical applications. J Eur Ceram Soc 36:2883–2888. https://doi.org/10.1016/j.jeurceramsoc.2015.12.020

    Article  Google Scholar 

  118. Jyoti S, Bose S, Hosick HL, Bandyopadhyay A (2023) Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modelling. 23:611–620.https://doi.org/10.1016/S0928-4931(03)00052-3

  119. Feilden E, Ferraro C, Zhang Q, García-Tuñón E, D’Elia E, Giuliani F, Vandeperre L, Saiz E (2017) 3D printing bioinspired ceramic composites. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-14236-9

    Article  Google Scholar 

  120. Goulas A, McGhee JR, Whittaker T, Ossai D, Mistry E, Whittow W, Vaidhyanathan B, Reaney IM, Vardaxoglou J(C, Engstrøm DS (2022) Synthesis and dielectric characterisation of a low loss BaSrTiO3/ABS ceramic/polymer composite for fused filament fabrication additive manufacturing. Addit Manuf 55:1–8. https://doi.org/10.1016/j.addma.2022.102844

    Article  Google Scholar 

  121. Goulas A, Zhang S, McGhee JR, Cadman DA, Whittow WG, Vardaxoglou JC, Engstrøm DS (2020) Fused filament fabrication of functionally graded polymer composites with variable relative permittivity for microwave devices. Mater Des 193:108871. https://doi.org/10.1016/j.matdes.2020.108871

    Article  Google Scholar 

  122. ErvinaEfzan MN, Siti SN (2018) A review on effect of nanoreinforcement on mechanical properties of polymer nanocomposites. Solid State Phenom 280:284–293. https://doi.org/10.4028/www.scientific.net/SSP.280.284

    Article  Google Scholar 

  123. Ryan KR, Down MP, Hurst NJ, Keefe EM, Banks CE (2022) Additive manufacturing (3D printing) of electrically conductive polymers and polymer nanocomposites and their applications. EScience 2:365–381. https://doi.org/10.1016/j.esci.2022.07.003

    Article  Google Scholar 

  124. Haq RHA, Wahab MS, Jaimi NI (2014) Fabrication process of polymer nano-composite filament for fused deposition modeling. Appl Mech Mater 465–466:8–12. https://doi.org/10.4028/www.scientific.net/AMM.465-466.8

    Article  Google Scholar 

  125. Tsiakatouras G, Tsellou E, Stergiou C (2014) Comparative study on nanotubes reinforced with carbon filaments for the 3D printing of mechanical parts. World Trans Eng Technol Educ 12:392–396

    Google Scholar 

  126. Dorigato A, Moretti V, Dul S, Unterberger SH, Pegoretti A (2017) Electrically conductive nanocomposites for fused deposition modelling. Synth Met 226:7–14. https://doi.org/10.1016/j.synthmet.2017.01.009

    Article  Google Scholar 

  127. Díaz-García JY, Law A, Cota A, Bellido-Correa J, Ramírez-Rico R, Schäfer V (2020) Franco, Novel procedure for laboratory scale production of composite functional filaments for additive manufacturing. Mater Today Commun 24:101049. https://doi.org/10.1016/j.mtcomm.2020.101049

    Article  Google Scholar 

  128. Hashemi R, Campagne C, Nierstrasz V (2017) Applied Surface Science Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles : effect of FDM printing process parameters. Appl Surf Sci 403:551–563. https://doi.org/10.1016/j.apsusc.2017.01.112

  129. Tambrallimath V, Keshavamurthy R, Bavan SD, Patil AY, Khan TMY, Badruddin IA, Kamangar S (2021) Mechanical properties of PC-ABS-based graphene-reinforced polymer nanocomposites fabricated by FDM process. Polymers (Basel) 13:2951

    Article  Google Scholar 

  130. Lei M, Wei Q, Li M, Zhang J, Yang R, Wang Y (2022) Numerical simulation and experimental study the effects of process parameters on filament morphology and mechanical properties of FDM 3D printed PLA / GNPs nanocomposite. Polymers (Basel) 14:3081

    Article  Google Scholar 

  131. Omar NWY, Shuaib NA, Hadi MHJA, Azmi AI (2019) Mechanical properties of carbon and glass fibre reinforced composites produced by additive manufacturing: a short review. IOP Conf Ser Mater Sci Eng 670:012020. https://doi.org/10.1088/1757-899X/670/1/012020

    Article  Google Scholar 

  132. Sanei SHR, Popescu D (2020) 3d-printed carbon fiber reinforced polymer composites: a systematic review. J Compos Sci 4:98. https://doi.org/10.3390/jcs4030098

    Article  Google Scholar 

  133. van de Werken N, Tekinalp H, Khanbolouki P, Ozcan S, Williams A, Tehrani M (2020) Additively manufactured carbon fiber-reinforced composites: state of the art and perspective. Addit Manuf 31:100962. https://doi.org/10.1016/j.addma.2019.100962

    Article  Google Scholar 

  134. Ochi S (2015) Flexural properties of long bamboo fiber/ pla composites, Open. J Compos Mater 05:70–78. https://doi.org/10.4236/ojcm.2015.53010

    Article  Google Scholar 

  135. Le Duigou A, Correa D, Ueda M, Matsuzaki R, Castro M (2020) A review of 3D and 4D printing of natural fibre biocomposites. Mater Des 194:108911. https://doi.org/10.1016/j.matdes.2020.108911

    Article  Google Scholar 

  136. Ahmad MN, Ishak MR, Mohammad Taha M, Mustapha F, Leman Z, Irianto (2023) Mechanical, thermal and physical characteristics of oil palm (Elaeis Guineensis) fiber reinforced thermoplastic composites for FDM – Type 3D printer. Polym Test 120:107972. https://doi.org/10.1016/j.polymertesting.2023.107972

    Article  Google Scholar 

  137. Abramovitch H, Burgard M, Edery-Azulay L, Evans KE, Hoffmeister M, Miller W, Scarpa F, Smith CW, Tee KF (2010) Smart tetrachiral and hexachiral honeycomb: sensing and impact detection. Compos Sci Technol 70:1072–1079. https://doi.org/10.1016/j.compscitech.2009.07.017

    Article  Google Scholar 

  138. Ning F, Cong W, Qiu J, Wei J, Wang S (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos Part B Eng 80:369–378. https://doi.org/10.1016/j.compositesb.2015.06.013

    Article  Google Scholar 

  139. Ueda M, Watanabe Y, Mukai Y, Katsumata N (2021) Three-dimensional printing of locally bendable short carbon fiber reinforced polymer composites. Adv Ind Eng Polym Res 4:264–269. https://doi.org/10.1016/j.aiepr.2021.02.004

    Article  Google Scholar 

  140. Fernandes RR, van de Werken N, Koirala P, Yap T, Tamijani AY, Tehrani M (2021) Experimental investigation of additively manufactured continuous fiber reinforced composite parts with optimized topology and fiber paths. Addit Manuf 44:102056. https://doi.org/10.1016/j.addma.2021.102056

    Article  Google Scholar 

  141. Fico D, Rizzo D, Casciaro R, Corcione CE (2022) A review of polymer-based materials for fused filament fabrication (FFF): focus on sustainability and recycled materials. Polymers (Basel) 14:465. https://doi.org/10.3390/polym14030465

    Article  Google Scholar 

  142. Dul S, Fambri L, Pegoretti A (2016) Fused deposition modelling with ABS-graphene nanocomposites. Compos Part A Appl Sci Manuf 85:181–191. https://doi.org/10.1016/j.compositesa.2016.03.013

    Article  Google Scholar 

  143. Weng Z, Wang J, Senthil T, Wu L (2016) Institute of research on the structure of matter, Chinese academy of sciences. JMADE. https://doi.org/10.1016/j.matdes.2016.04.045

    Article  Google Scholar 

  144. Shanmugam V (2021) Fused deposition modeling based polymeric materials and their performance: a review. 1–22. https://doi.org/10.1002/pc.26275

  145. Maqsood N, Rima M (2021) Composites Part C: Open access characterization of carbon fiber reinforced PLA composites manufactured by fused deposition modelling. 4. https://doi.org/10.1016/j.jcomc.2021.100112

  146. Ilyas RA, Sapuan SM, Harussani MM, Hakimi MYAY, Haziq MZM, Atikah MSN, Asyraf MRM, Ishak MR, Razman MR, Nurazzi NM, Norrrahim MNF, Abral H, Asrofi M (2021) Polylactic acid (Pla) biocomposite: processing, additive manufacturing and advanced applications. Polymers (Basel) 13:1326. https://doi.org/10.3390/polym13081326

    Article  Google Scholar 

  147. Sodeifian G, Ghaseminejad S, Yousefi AA (2019) Preparation of polypropylene/short glass fiber composite as fused deposition modeling (FDM) filament. Results Phys 12:205–222. https://doi.org/10.1016/j.rinp.2018.11.065

    Article  Google Scholar 

  148. Street DP, Mah AH, Patterson S, Pickel DL, Bergman JA, Stein GE, Messman JM, Kilbey SM (2018) Interfacial interactions in PMMA/silica nanocomposites enhance the performance of parts created by Fused Filament Fabrication. Polymer (Guildf) 157:87–94. https://doi.org/10.1016/j.polymer.2018.10.004

    Article  Google Scholar 

  149. Zhang Z, Demir KG, Gu GX (2019) Developments in 4D-printing: a review on current smart materials, technologies, and applications. Int J Smart Nano Mater 10:205–224. https://doi.org/10.1080/19475411.2019.1591541

    Article  Google Scholar 

  150. Khoo ZX, Teoh JEM, Liu Y, Chua CK, Yang S, An J, Leong KF, Yeong WY (2015) 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys Prototyp 10:103–122. https://doi.org/10.1080/17452759.2015.1097054

    Article  Google Scholar 

  151. Kamila S (2013) Introduction, classification and applications of smart materials: an overview. Am J Appl Sci 10:876–880. https://doi.org/10.3844/ajassp.2013.876.880

    Article  Google Scholar 

  152. Varadan VK, Vinoy KJ, Gopalakrishnan S (2006) Smart material systems and MEMS: design and development methodologies. Wiley

    Book  Google Scholar 

  153. Le A, Correa D, Ueda M, Matsuzaki R, Castro M (2020) A review of 3D and 4D printing of natural fi bre biocomposites. Mater Des 194:108911. https://doi.org/10.1016/j.matdes.2020.108911

    Article  Google Scholar 

  154. Salentijn GIJ, Oomen PE, Grajewski M, Verpoorte E (2017) Fused deposition modeling 3D printing for (bio)analytical device fabrication: procedures, materials, and applications. https://doi.org/10.1021/acs.analchem.7b00828

  155. Momeni F, Sabzpoushan S, Valizadeh R, Morad MR, Liu X, Ni J (2019) Plant leaf-mimetic smart wind turbine blades by 4D printing. Renew Energy 130:329–351

    Article  Google Scholar 

  156. Cuan-Urquizo E, Barocio E, Tejada-Ortigoza V, Pipes RB, Rodriguez CA, Roman-Flores A (2019) Characterization of the mechanical properties of FFF structures and materials: a review on the experimental, computational and theoretical approaches. Materials (Basel) 16:895. https://doi.org/10.3390/ma12060895

    Article  Google Scholar 

  157. Bakhtiari H, Aamir M, Tolouei-Rad M (2023) Effect of 3D printing parameters on the fatigue properties of parts manufactured by fused filament fabrication: a review. Appl Sci 13:904. https://doi.org/10.3390/app13020904

    Article  Google Scholar 

  158. Shanmugam V, Das O, Babu K, Marimuthu U, Veerasimman A, Johnson DJ, Neisiany RE, Hedenqvist MS, Ramakrishna S, Berto F (2021) Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials. Int J Fatigue 143:1–15. https://doi.org/10.1016/j.ijfatigue.2020.106007

    Article  Google Scholar 

  159. Goh GD, Yap YL, Tan HKJ, Sing SL, Goh GL, Yeong WY (2020) Process–structure–properties in polymer additive manufacturing via material extrusion: a review. Crit Rev Solid State Mater Sci 45:113–133. https://doi.org/10.1080/10408436.2018.1549977

    Article  Google Scholar 

  160. Gao G, Xu F, Xu J, Tang G, Liu Z (2022) A survey of the influence of process parameters on mechanical properties of fused deposition modeling parts. Micromachines 13:1–28. https://doi.org/10.3390/mi13040553

    Article  Google Scholar 

  161. Gebisa AW, Lemu HG (2018) Investigating effects of fused-deposition modeling (FDM) processing parameters on flexural properties of ULTEM 9085 using designed experiment. Materials (Basel) 11:1–23. https://doi.org/10.3390/ma11040500

    Article  Google Scholar 

  162. Khan MS, Mishra SB (2019) Minimizing surface roughness of ABS-FDM build parts: an experimental approach. Mater Today Proc 26:1557–1566. https://doi.org/10.1016/j.matpr.2020.02.320

    Article  Google Scholar 

  163. Zharylkassyn B, Perveen A, Talamona D (2021) Effect of process parameters and materials on the dimensional accuracy of FDM parts. Mater Today Proc 44:1307–1311. https://doi.org/10.1016/j.matpr.2020.11.332

    Article  Google Scholar 

  164. Mohamed OA, Masood SH, Bhowmik JL (2017) Experimental investigation for dynamic stiffness and dimensional accuracy of FDM manufactured part using IV-Optimal response surface design. Rapid Prototyp J 23:736–749. https://doi.org/10.1108/RPJ-10-2015-0137

    Article  Google Scholar 

  165. Mohanty A, Nag KS, Bagal DK, Barua A, Jeet S, Mahapatra SS, Cherkia H (2021) Parametric optimization of parameters affecting dimension precision of FDM printed part using hybrid Taguchi-MARCOS-nature inspired heuristic optimization technique. Mater Today Proc 50:893–903. https://doi.org/10.1016/j.matpr.2021.06.216

    Article  Google Scholar 

  166. Ahn SH, Montero M, Odell D, Roundy S, Wright PK (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8:248–257. https://doi.org/10.1108/13552540210441166

    Article  Google Scholar 

  167. Zekavat AR, Jansson A, Larsson J, Pejryd L (2019) Investigating the effect of fabrication temperature on mechanical properties of fused deposition modeling parts using X-ray computed tomography. Int J Adv Manuf Technol 100:287–296. https://doi.org/10.1007/s00170-018-2664-8

    Article  Google Scholar 

  168. Gebisa AW, Lemu HG (2019) Influence of 3D printing FDM process parameters on tensile property of ultem 9085. Procedia Manuf 30:331–338. https://doi.org/10.1016/j.promfg.2019.02.047

    Article  Google Scholar 

  169. Dawoud M, Taha I, Ebeid SJ (2016) Mechanical behaviour of ABS: an experimental study using FDM and injection moulding techniques. J Manuf Process 21:39–45. https://doi.org/10.1016/j.jmapro.2015.11.002

    Article  Google Scholar 

  170. Rayegani F, Onwubolu GC (2014) Fused deposition modelling (fdm) process parameter prediction and optimization using group method for data handling (gmdh) and differential evolution (de). Int J Adv Manuf Technol 73:509–519. https://doi.org/10.1007/s00170-014-5835-2

    Article  Google Scholar 

  171. Motaparti KP, Taylor G, Leu MC, Chandrashekhara K, Castle J, Matlack M (2016) Effects of build parameters on compression properties for ULTEM 9085 parts by fused deposition modelling. In: Proceeding 27th Annu Int Solid Free Fabr Symp pp 964–977

  172. Too MH, Leong KF, Chua CK, Du ZH, Yang SF, Cheah CM, Ho SL (2002) Investigation of 3D non-random porous structures by fused deposition modelling. Int J Adv Manuf Technol 19:217–223. https://doi.org/10.1007/s001700200016

    Article  Google Scholar 

  173. Alsoufi MS, El-Sayed A, Elsayed AE (2017) How surface roughness performance of printed parts manufactured by desktop FDM 3D printer with PLA+ is influenced by measuring direction. Am J Mech Eng 5:211–222. https://doi.org/10.12691/ajme-5-5-4

    Article  Google Scholar 

  174. Nancharaiah T, Ranga Raju D, Ramachandra Raju V (2010) An experimental investigation on surface quality and dimensional accuracy of FDM components. Int J Emerg Technol 1:106–111

    Google Scholar 

  175. Kamoona SN, Masood SH, Mohamed OA (2018) Experimental investigation on flexural properties of FDM processed Nylon 12 parts using RSM. IOP Conf Ser Mater Sci Eng 377:012137. https://doi.org/10.1088/1757-899X/377/1/012137

    Article  Google Scholar 

  176. Mishra SB, Malik R, Mahapatra SS (2017) Effect of external perimeter on flexural strength of FDM build parts. Arab J Sci Eng 42:4587–4595. https://doi.org/10.1007/s13369-017-2598-8

    Article  Google Scholar 

  177. Hassanifard S, Behdinan K (2022) Effects of voids and raster orientations on fatigue life of notched additively manufactured PLA components. Int J Adv Manuf Technol 120:6241–6250. https://doi.org/10.1007/s00170-022-09169-1

    Article  Google Scholar 

  178. Mishra SB, Mahapatra SS (2018) An experimental investigation on strain controlled fatigue behaviour of FDM build parts. Int J Product Qual Manag 24:323–345. https://doi.org/10.1504/IJPQM.2018.092980

    Article  Google Scholar 

  179. Bianchi I, Forcellese A, Mancia T, Simoncini M, Vita A (2022) Process parameters effect on environmental sustainability of composites FFF technology. Mater Manuf Process 37:591–601. https://doi.org/10.1080/10426914.2022.2049300

    Article  Google Scholar 

  180. Milde J, Morovič L, Blaha J (2017) Influence of the layer thickness in the fused deposition modeling process on the dimensional and shape accuracy of the upper teeth model. 02006. https://doi.org/10.1051/matecconf/201713702006

  181. Tymrak BM, Kreiger M, Pearce JM (2014) Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater Des 58:242–246. https://doi.org/10.1016/j.matdes.2014.02.038

    Article  Google Scholar 

  182. Uddin MS, Sidek MFR, Faizal MA, Ghomashchi R, Pramanik A (2017) Evaluating mechanical properties and failure mechanisms of fused deposition modeling acrylonitrile butadiene styrene parts. J Manuf Sci Eng Trans ASME 139:1–12. https://doi.org/10.1115/1.4036713

    Article  Google Scholar 

  183. Griffiths CA, Howarth J, de Almeida Rowbotham G, Rees A (2016) Effect of build parameters on processing efficiency and material performance in fused deposition modelling. Procedia CIRP 49:28–32. https://doi.org/10.1016/J.PROCIR.2015.07.024

    Article  Google Scholar 

  184. Chacón JM, Caminero MA, García-Plaza E, Núñez PJ (2017) Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection. Mater Des 124:143–157. https://doi.org/10.1016/j.matdes.2017.03.065

    Article  Google Scholar 

  185. MengeshaMedibew T (2022) A Comprehensive review on the optimization of the fused deposition modeling process parameter for better tensile strength of PLA-printed parts. Adv Mater Sci Eng 2022:1. https://doi.org/10.1155/2022/5490831

    Article  Google Scholar 

  186. Travieso-Rodriguez JA, Jerez-Mesa R, Llumà J, Traver-Ramos O, Gomez-Gras G, Rovira JJR (2019) Mechanical properties of 3D-printing polylactic acid parts subjected to bending stress and fatigue testing, Materials (Basel) 12. https://doi.org/10.3390/ma122333859

  187. Xu C, Cheng K, Liu Y, Wang R, Jiang X, Dong X, Xu X (2020) Effect of processing parameters on flexural properties of 3D-printed polyetherketoneketone using fused deposition modeling. Polym Eng Sci 61:465–476

    Article  Google Scholar 

  188. Nugroho A, Ardiansyah R, Rusita L, Larasati IL (2018) Effect of layer thickness on flexural properties of PLA (PolyLactid Acid) by 3D printing. J Phys Conf Ser 1130:1–10. https://doi.org/10.1088/1742-6596/1130/1/012017

    Article  Google Scholar 

  189. Wang P, Zou B, Ding S, Li L, Huang C (2021) Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chinese J Aeronaut 34:236–246. https://doi.org/10.1016/j.cja.2020.05.040

    Article  Google Scholar 

  190. Gomez-gras G, Jerez-mesa R, Travieso-rodriguez JA, Lluma-fuentes J (2018) Fatigue performance of fused fi lament fabrication PLA specimens. Mater Des 140:278–285. https://doi.org/10.1016/j.matdes.2017.11.072

    Article  Google Scholar 

  191. Travieso-rodriguez JA, Jerez-mesa R, Lluma J, Traver-ramos O, Gomez-gras G, RoaRovira JJ (2019) Mechanical properties of 3D-printing polylactic acid parts subjected to bending stress and fatigue testing. Materials (Basel) 12:1–20

    Article  Google Scholar 

  192. Alshammari YLA, He F, Khan MA (2021) Acrylonitrile butadiene styrene ( ABS ) with various printing parameters and ambient temperatures. Polymers (Basel) 13:1–20

    Article  Google Scholar 

  193. He F, Khan M (2021) Effects of printing parameters on the fatigue behaviour of 3D-printed ABS under dynamic thermo-mechanical loads. Polymers (Basel) 13:1–23

    Article  Google Scholar 

  194. Domingo-Espin M, Travieso-Rodriguez J, Jerez-Mesa R, Lluma-Fuentes J (2018) Fatigue performance of ABS specimens obtained by fused filament fabrication. Materials (Basel) 11:1–16. https://doi.org/10.3390/ma11122521

    Article  Google Scholar 

  195. Travieso-rodriguez JA, Zandi MD, Jerez-mesa R, Lluma-Fuentes J (2020) Fatigue behavior of PLA-wood composite. J Mater Res Technol 9:8507–8516

    Article  Google Scholar 

  196. Kuznetsov VE, Solonin AN, Urzhumtsev OD, Schilling R, Tavitov AG (2018) Strength of PLA components fabricated with fused deposition technology using a desktop 3D printer as a function of geometrical parameters of the process. Polymers (Basel) 10:313. https://doi.org/10.3390/polym10030313

    Article  Google Scholar 

  197. Zaldivar RJ, Witkin DB, McLouth T, Patel DN, Schmitt K, Nokes JP (2017) Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D-Printed ULTEM ® 9085 Material. Addit Manuf 13:71–80. https://doi.org/10.1016/j.addma.2016.11.007

    Article  Google Scholar 

  198. Riddick JC, Haile MA, Von Wahlde R, Cole DP, Bamiduro O, Johnson TE (2016) Fractographic analysis of tensile failure of acrylonitrile-butadiene-styrene fabricated by fused deposition modeling. Addit Manuf 11:49–59. https://doi.org/10.1016/j.addma.2016.03.007

    Article  Google Scholar 

  199. Cantrell JT, Rohde S, Damiani D, Gurnani R, DiSandro L, Anton J, Young A, Jerez A, Steinbach D, Kroese C, Ifju PG (2017) Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Rapid Prototyp J 23:811–824. https://doi.org/10.1108/RPJ-03-2016-0042

    Article  Google Scholar 

  200. Abbott AC, Tandon GP, Bradford RL, Koerner H, Baur JW (2018) Process-structure-property effects on ABS bond strength in fused filament fabrication. Addit Manuf 19:29–38. https://doi.org/10.1016/j.addma.2017.11.002

    Article  Google Scholar 

  201. Gonabadi H, Yadav A, Bull SJ (2020) The effect of processing parameters on the mechanical characteristics of PLA produced by a 3D FFF printer. Int J Adv Manuf Technol 111:695–709. https://doi.org/10.1007/s00170-020-06138-4

    Article  Google Scholar 

  202. Smith WC, Dean RW (2013) Structural characteristics of fused deposition modeling polycarbonate material. Polym Test 32:1306–1312. https://doi.org/10.1016/j.polymertesting.2013.07.014

    Article  Google Scholar 

  203. Jin Y, Wan Y, Zhang B, Liu Z (2017) Modeling of the chemical finishing process for polylactic acid parts in fused deposition modeling and investigation of its tensile properties. J Mater Process Technol 240:233–239. https://doi.org/10.1016/j.jmatprotec.2016.10.003

    Article  Google Scholar 

  204. Domingo-Espin M, Puigoriol-Forcada JM, Garcia-Granada AA, Llumà J, Borros S, Reyes G (2015) Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts. Mater Des 83:670–677. https://doi.org/10.1016/j.matdes.2015.06.074

    Article  Google Scholar 

  205. Yadav DK, Srivastava R, Dev S (2020) Materials Today : Proceedings Design & fabrication of ABS part by FDM for automobile application. Mater Today Proc 26:2089–2093. https://doi.org/10.1016/j.matpr.2020.02.451

  206. Taylor G, Wang X, Mason L, Leu MC, Chandrashekhara K, Schniepp T, Jones R (2018) Flexural behavior of additively manufactured Ultem 1010: experiment and simulation. Rapid Prototyp J 24:1003–1011. https://doi.org/10.1108/RPJ-02-2018-0037

    Article  Google Scholar 

  207. Raut S, Jatti VS, Khedkar NK, Singh TP (2014) Investigation of the effect of built orientation on mechanical properties and total cost of FDM parts, Procedia. Mater Sci 6:1625–1630. https://doi.org/10.1016/j.mspro.2014.07.146

    Article  Google Scholar 

  208. Beattie N, Bock N, Anderson T, Edgeworth T, Kloss T, Swanson J (2021) Effects of build orientation on mechanical properties of fused deposition modeling parts. J Mater Eng Perform 30:5059–5065. https://doi.org/10.1007/s11665-021-05624-4

    Article  Google Scholar 

  209. Afrose MF, Masood SH, Iovenitti P, Nikzad M, Sbarski I (2016) Effects of part build orientations on fatigue behaviour of FDM-processed PLA material. Prog Addit Manuf 1:21–28. https://doi.org/10.1007/s40964-015-0002-3

    Article  Google Scholar 

  210. Puigoriol-Forcada JM, Alsina A, Salazar-Martín AG, Gomez-Gras G, Pérez MA (2018) Flexural fatigue properties of polycarbonate fused-deposition modelling specimens. Mater Des 155:414–421. https://doi.org/10.1016/j.matdes.2018.06.018

    Article  Google Scholar 

  211. Terekhina S, Tarasova T, Egorov S, Skornyakov I, Guillaumat L, Hattali ML (2020) The effect of build orientation on both flexural quasi-static and fatigue behaviours of filament deposited PA6 polymer. Int J Fatigue 140:105825. https://doi.org/10.1016/j.ijfatigue.2020.105825

    Article  Google Scholar 

  212. Fischer M, Schöppner V (2017) Fatigue behavior of FDM parts manufactured with Ultem 9085. Jom 69:563–568. https://doi.org/10.1007/s11837-016-2197-2

    Article  Google Scholar 

  213. Azadi M, Dadashi A, Dezianian S, Kianifar M, Torkaman S, Chiyani M (2021) High-cycle bending fatigue properties of additive-manufactured ABS and PLA polymers fabricated by fused deposition modeling 3D-printing. Forces Mech 3:100016. https://doi.org/10.1016/j.finmec.2021.100016

    Article  Google Scholar 

  214. Hassanifard S, Hashemi SM (2020) On the strain-life fatigue parameters of additive manufactured plastic materials through fused filament fabrication process. Addit Manuf 32:1–8. https://doi.org/10.1016/j.addma.2019.100973

    Article  Google Scholar 

  215. Rajan K, Samykano M, Kadirgama K, Harun WSW, Rahman MM (2022) Fused deposition modeling: process, materials, parameters, properties, and applications. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-022-08860-7

    Article  Google Scholar 

  216. Çakan BG (2021) Effects of raster angle on tensile and surface roughness properties of various FDM filaments. J Mech Sci Technol 35:3347–3353. https://doi.org/10.1007/s12206-021-0708-8

    Article  Google Scholar 

  217. Es-Said OS, Foyos J, Noorani R, Mendelson M, Marloth R, Pregger BA (2000) Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater Manuf Process 15:107–122. https://doi.org/10.1080/10426910008912976

    Article  Google Scholar 

  218. Melenka GW, Schofield JS, Dawson MR, Carey JP (2015) Evaluation of dimensional accuracy and material properties of the MakerBot 3D desktop printer. Rapid Prototyp J 21:618–627. https://doi.org/10.1108/RPJ-09-2013-0093

    Article  Google Scholar 

  219. Rajpurohit SR, Dave HK (2018) Flexural strength of fused filament fabricated (FFF) PLA parts on an open-source 3D printer. Adv Manuf 6:430–441. https://doi.org/10.1007/s40436-018-0237-6

    Article  Google Scholar 

  220. Christiyan KGJ, Chandrasekhar U, Venkateswarlu K (2016) Flexural properties of PLA Components under various test condition manufactured by 3D printer. J Inst Eng. https://doi.org/10.1007/s40032-016-0344-8

    Article  Google Scholar 

  221. Styrene AB, Qayyum H, Hussain G, Sulaiman M, Hassan M, Ali A, Muhammad R, Wei H, Shehbaz T, Aamir M, Altaf K (2022) Applied sciences effect of raster angle and infill pattern on the in-plane and edgewise flexural properties of fused filament fabricated acrylonitrile-butadiene-styrene. Appl Sci 12:1–15

    Google Scholar 

  222. Srinivasan S, Iyer G, Keles O (2022) Effect of raster angle on mechanical properties of 3D printed short carbon fiber reinforced acrylonitrile butadiene styrene. Compos Commun 32:101163. https://doi.org/10.1016/j.coco.2022.101163

    Article  Google Scholar 

  223. Srinivasan Ganesh Iyer S, Keles O (2022) Effect of raster angle on mechanical properties of 3D printed short carbon fiber reinforced acrylonitrile butadiene styrene. Compos Commun 32:101163. https://doi.org/10.1016/j.coco.2022.101163

    Article  Google Scholar 

  224. Ziemian S, Okwara M, Ziemian CW (2015) Tensile and fatigue behavior of layered acrylonitrile butadiene styrene. Rapid Prototyp J 3:270–278. https://doi.org/10.1108/RPJ-09-2013-0086

    Article  Google Scholar 

  225. Mayén J, Del Carmen Gallegos-Melgar A, Pereyra I, Poblano-Salas CA, Hernández-Hernández M, Betancourt-Cantera JA, Mercado-Lemus VH, Del Angel Monroy M (2022) Descriptive and inferential study of hardness, fatigue life, and crack propagation on PLA 3D-printed parts. Mater Today Commun 32:103948. https://doi.org/10.1016/j.mtcomm.2022.103948

    Article  Google Scholar 

  226. Jap NSF, Pearce GM, Hellier AK, Russell N, Parr WC, Walsh WR (2019) The effect of raster orientation on the static and fatigue properties of filament deposited ABS polymer. Int J Fatigue 124:328–337. https://doi.org/10.1016/j.ijfatigue.2019.02.042

    Article  Google Scholar 

  227. Alshammari YLA, He F, Khan MA (2021) Modelling and investigation of crack growth for 3d-printed acrylonitrile butadiene styrene (ABS) with various printing parameters and ambient temperatures. Polymers (Basel) 13:3737. https://doi.org/10.3390/polym13213737

    Article  Google Scholar 

  228. Ezeh OH, Susmel L (2019) Fatigue strength of additively manufactured polylactide (PLA): effect of raster angle and non-zero mean stresses. Int J Fatigue 126:319–326. https://doi.org/10.1016/j.ijfatigue.2019.05.014

    Article  Google Scholar 

  229. Ezeh OH, Susmel L (2018) On the fatigue strength of 3D-printed polylactide (PLA). Procedia Struct Integr 9:29–36. https://doi.org/10.1016/j.prostr.2018.06.007

    Article  Google Scholar 

  230. Hassanifard S, Hashemi SM (2020) On the strain-life fatigue parameters of additive manufactured plastic materials through fused filament fabrication process. Addit Manuf 32:100973. https://doi.org/10.1016/j.addma.2019.100973

    Article  Google Scholar 

  231. Letcher T, Waytashek M (2016) Material property testing of 3D-printed specimen in PLA on an entry-level 3D printer. Proc ASME 2014 Int Mech Eng Congr Expo 1–8. http://www.asme.org/about-asme/terms-of-use

  232. Dialami N, Chiumenti M, Cervera M, Rossi R, Chasco U, Domingo M (2021) Numerical and experimental analysis of the structural performance of AM components built by fused filament fabrication. Int J Mech Mater Des 17:225–244. https://doi.org/10.1007/s10999-020-09524-8

    Article  Google Scholar 

  233. Mahmood S, Qureshi AJ, Goh KL, Talamona D (2017) Tensile strength of partially filled FFF printed parts: experimental results. Rapid Prototyp J 23:122–128. https://doi.org/10.1108/RPJ-08-2015-0115

    Article  Google Scholar 

  234. Rashed K, Kafi A, Simons R, Bateman S (2022) Effects of fused filament fabrication process parameters on tensile properties of polyether ketone ketone (PEKK). Int J Adv Manuf Technol 122:3607–3621. https://doi.org/10.1007/s00170-022-10134-1

    Article  Google Scholar 

  235. Giri J, Shahane P, Jachak S, Chadge R, Giri P (2021) Optimization of fdm process parameters for dual extruder 3d printer using artificial neural network. Mater Today Proc 43:3242–3249. https://doi.org/10.1016/j.matpr.2021.01.899

    Article  Google Scholar 

  236. Croccolo D, De Agostinis M, Olmi G (2013) Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30. Comput Mater Sci 79:506–518. https://doi.org/10.1016/j.commatsci.2013.06.041

    Article  Google Scholar 

  237. Hikmat M, Rostam S, Ahmed YM (2021) Investigation of tensile property-based Taguchi method of PLA parts fabricated by FDM 3D printing technology. Results Eng 11:100264. https://doi.org/10.1016/j.rineng.2021.100264

    Article  Google Scholar 

  238. Kumar N, Jain PK, Tandon P, Pandey PM (2018) The effect of process parameters on tensile behavior of 3D printed flexible parts of ethylene vinyl acetate (EVA). J Manuf Process 35:317–326. https://doi.org/10.1016/j.jmapro.2018.08.013

    Article  Google Scholar 

  239. Bruère VM, Lion A, Holtmannspötter J, Johlitz M (2023) The influence of printing parameters on the mechanical properties of 3D printed TPU-based elastomers. Prog Addit Manuf. https://doi.org/10.1007/s40964-023-00418-7

    Article  Google Scholar 

  240. Mohamed OA, Masood SH, Bhowmik JL (2016) Mathematical modeling and FDM process parameters optimization using response surface methodology based on Q-optimal design. Appl Math Model 40:10052–10073. https://doi.org/10.1016/j.apm.2016.06.055

    Article  Google Scholar 

  241. Choudhary N, Sharma V, Kumar P (2023) Polylactic acid-based composite using fused filament fabrication: process optimization and biomedical application. Polym Compos 44:69–88. https://doi.org/10.1002/pc.27027

    Article  Google Scholar 

  242. Rashed K, Kafi A, Simons R, Bateman S (2023) Optimization of material extrusion additive manufacturing process parameters for polyether ketone ketone (PEKK). Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-023-11167-w

    Article  Google Scholar 

  243. Chowdary BV, Bob AA (2021) Impact of processing parameters on fatigue life of fused filament fabricated parts: application of central composite design and genetic algorithm tools. Int J Rapid Manuf 10:80–104

    Article  Google Scholar 

  244. Gordelier TJ, Thies PR, Turner L, Johanning L (2019) Optimising the FDM additive manufacturing process to achieve maximum tensile strength: a state-of-the-art review. Rapid Prototyp J 25:953–971. https://doi.org/10.1108/RPJ-07-2018-0183

    Article  Google Scholar 

  245. Khan I, Kumar N (2020) Fused deposition modelling process parameters influence on the mechanical properties of ABS: A review. Mater Today Proc 44:4004–4008. https://doi.org/10.1016/j.matpr.2020.10.202

    Article  Google Scholar 

  246. Sandanamsamy L, Harun WSW, Ishak I, Romlay FRM, Kadirgama K, Ramasamy D, Idris SRA, Tsumori F (2022) A comprehensive review on fused deposition modelling of polylactic acid. Prog Addit Manuf. https://doi.org/10.1007/s40964-022-00356-w

    Article  Google Scholar 

  247. Vishwas M, Basavaraj CK (2017) Studies on optimizing process parameters of fused deposition modelling technology for ABS. Mater Today Proc 4:10994–11003. https://doi.org/10.1016/j.matpr.2017.08.057

    Article  Google Scholar 

  248. Syrlybayev D, Zharylkassyn B, Seisekulova A, Akhmetov M, Perveen A, Talamona D (2021) Optimisation of strength properties of FDM printed parts — a. Polymers (Basel) 13:1–35

    Article  Google Scholar 

  249. Bakır AA, Atik R, Özerinç S (2021) Mechanical properties of thermoplastic parts produced by fused deposition modeling:a review. Rapid Prototyp J 27:537–561. https://doi.org/10.1108/RPJ-03-2020-0061

    Article  Google Scholar 

  250. Chohan JS, Singh R (2017) Pre and post processing techniques to improve surface characteristics of FDM parts: a state of art review and future applications. Rapid Prototyp J 23:495

    Article  Google Scholar 

  251. Kaur G, Singari RM, Kumar H (2021) A review of fused filament fabrication (FFF): process parameters and their impact on the tribological behavior of polymers (ABS). Mater Today Proc 51:854–860. https://doi.org/10.1016/j.matpr.2021.06.274

    Article  Google Scholar 

  252. Vicente CMS, Martins TS, Leite M, Ribeiro A, Reis L (2020) Influence of fused deposition modeling parameters on the mechanical properties of ABS parts. Polym Adv Technol 31:501–507. https://doi.org/10.1002/pat.4787

    Article  Google Scholar 

  253. Zhang X, Chen L, Mulholland T, Osswald TA (2019) Effects of raster angle on the mechanical properties of PLA and Al / PLA composite part produced by fused deposition modelling. 2122–2135. https://doi.org/10.1002/pat.4645

  254. Krajangsawasdi N, Blok LG, Hamerton I, Longana ML, Woods BKS, Ivanov DS (2021) Fused deposition modelling of fibre reinforced polymer composites : a parametric review. J Compos Sci 5:1–38

  255. Ramesh M, Rajeshkumar L, Balaji D (2021) Influence of process parameters on the properties of additively manufactured fiber-reinforced polymer composite materials : a review. J Mater Eng Perform 30:4792–4807

  256. Jiang D, Smith DE (2017) Anisotropic mechanical properties of oriented carbon fiber filled polymer composites produced with fused filament fabrication. Addit Manuf 18:84–94. https://doi.org/10.1016/j.addma.2017.08.006

    Article  Google Scholar 

  257. Peng X, Zhang M, Guo Z, Sang L, Hou W (2020) Investigation of processing parameters on tensile performance for FDM-printed carbon fiber reinforced polyamide 6 composites. Compos Commun 22:1–7. https://doi.org/10.1016/j.coco.2020.100478

    Article  Google Scholar 

  258. Tekinalp HL, Kunc V, Velez-Garcia GM, Duty CE, Love LJ, Naskar AK, Blue CA, Ozcan S (2014) Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos Sci Technol 105:144–150

    Article  Google Scholar 

  259. Chacón JM, Caminero MA, Núñez PJ, García-Plaza E, García-Moreno I, Reverte JM (2019) Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: effect of process parameters on mechanical properties. Compos Sci Technol 181:107688. https://doi.org/10.1016/j.compscitech.2019.107688

    Article  Google Scholar 

  260. Ramalingam PS, Mayandi K, Balasubramanian V, Chandrasekar K, Stalany VM, Munaf AA (2020) Effect of 3D printing process parameters on the impact strength of onyx – glass fiber reinforced composites. Mater Today Proc 45:6154–6159. https://doi.org/10.1016/j.matpr.2020.10.467

    Article  Google Scholar 

  261. Mohan KHR, Benal MGM, Pradeep KGS, Tambrallimath V, Geetha HR, Khan TMY, Rajhi AA, Baig MAA (2022) Influence of short glass fibre reinforcement on mechanical properties of 3D printed ABS-based polymer composites. Polymers (Basel) 14:1182. https://doi.org/10.3390/polym14061182

    Article  Google Scholar 

  262. Rigon D, Ricotta M, Ardengo G, Meneghetti G (2021) Static mechanical properties of virgin and recycled short glass fiber-reinforced polypropylene produced by pellet additive manufacturing. Fatigue Fract Eng Mater Struct 44:2554–2569. https://doi.org/10.1111/ffe.13517

    Article  Google Scholar 

  263. Goh GD, Dikshit V, Nagalingam AP, Goh GL, Agarwala S, Sing SL, Wei J, Yeong WY (2018) Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. Mater Des 137:79–89. https://doi.org/10.1016/j.matdes.2017.10.021

    Article  Google Scholar 

  264. Alarifi IM (2022) A performance evaluation study of 3d printed nylon/glass fiber and nylon/carbon fiber composite materials. J Mater Res Technol 21:884–892. https://doi.org/10.1016/j.jmrt.2022.09.085

    Article  Google Scholar 

  265. Wang Y, Kong D, Zhang Q, Li W, Liu J (2021) Process parameters and mechanical properties of continuous glass fiber reinforced composites-polylactic acid by fused deposition modeling. J Reinf Plast Compos 40:686–698. https://doi.org/10.1177/0731684421998017

    Article  Google Scholar 

  266. Penumakala PK, Santo J, Thomas A (2020) A critical review on the fused deposition modeling of thermoplastic polymer composites. Compos Part B Eng 201:108336. https://doi.org/10.1016/j.compositesb.2020.108336

    Article  Google Scholar 

  267. Zhong W, Li F, Zhang Z, Song L, Li Z (2001) Short fiber reinforced composites for fused deposition modeling. Mater Sci Eng A 301:125–130. https://doi.org/10.1016/S0921-5093(00)01810-4

    Article  Google Scholar 

  268. Yang D, Zhang H, Wu J, McCarthy ED (2021) Fibre flow and void formation in 3D printing of short-fibre reinforced thermoplastic composites: an experimental benchmark exercise. Addit Manuf 37:101686. https://doi.org/10.1016/j.addma.2020.101686

    Article  Google Scholar 

  269. Justo J, Távara L, García-Guzmán L, París F (2018) Characterization of 3D printed long fibre reinforced composites. Compos Struct 185:537–548. https://doi.org/10.1016/j.compstruct.2017.11.052

    Article  Google Scholar 

  270. Ahmad MN, Ishak MR, Taha MM, Mustapha F, Leman Z (2022) Rheological properties of natural fiber reinforced thermoplastic composite for fused deposition modeling (FDM): a short review. J Adv Res Fluid Mech Therm Sci 98:157–164. https://doi.org/10.37934/arfmts.98.2.157164

    Article  Google Scholar 

  271. RajendranRoyan NR, Leong JS, Chan WN, Tan JR, Shamsuddin ZSB (2021) Current state and challenges of natural fibre-reinforced polymer composites as feeder in fdm-based 3d printing. Polymers (Basel) 13:2289. https://doi.org/10.3390/polym13142289

    Article  Google Scholar 

  272. Lee CH, Padzil FNBM, Lee SH, Ainun ZMA, Abdullah LC (2021) Potential for natural fiber reinforcement in pla polymer filaments for fused deposition modeling (Fdm) additive manufacturing: a review. Polymers (Basel) 13:1407. https://doi.org/10.3390/polym13091407

    Article  Google Scholar 

  273. Aida HJ, Nadlene R, Mastura MT, Yusriah L, Sivakumar D, Ilyas RA (2021) Natural fibre filament for fused deposition modelling (FDM): a review. Int J Sustain Eng 14:1988–2008. https://doi.org/10.1080/19397038.2021.1962426

    Article  Google Scholar 

  274. Fidan I, Imeri A, Gupta A, Hasanov S, Nasirov A, Elliott A, Alifui-Segbaya F, Nanami N (2019) The trends and challenges of fiber reinforced additive manufacturing. Int J Adv Manuf Technol 102:1801–1818. https://doi.org/10.1007/s00170-018-03269-7

    Article  Google Scholar 

  275. Mazzanti V, Malagutti L, Mollica F (2019) FDM 3D printing of polymers containing natural fillers: a review of their mechanical properties. Polymers (Basel) 11:1–22. https://doi.org/10.3390/polym11071094

    Article  Google Scholar 

  276. Scaffaro R, Citarrella MC, Gulino EF, Morreale M (2022) Hedysarum coronarium-based green composites prepared by compression molding and fused deposition modeling. Materials (Basel) 15:465. https://doi.org/10.3390/ma15020465

    Article  Google Scholar 

  277. Pereira DF, Branco AC, Cláudio R, Marques AC, Figueiredo-Pina CG (2023) Development of composites of PLA filled with different amounts of rice husk fibers for fused deposition modelling. J Nat Fibers 20. https://doi.org/10.1080/15440478.2022.2162183

  278. Deb D, Jafferson JM (2021) Natural fibers reinforced FDM 3D printing filaments. Mater Today Proc 46:1308–1318. https://doi.org/10.1016/j.matpr.2021.02.397

    Article  Google Scholar 

  279. Zhang Q, Cai H, Zhang A, Lin X, Yi W, Zhang J (2018) Effects of lubricant and toughening agent on the fluidity and toughness of poplar powder-reinforced polylactic acid 3D printing materials. Polymers (Basel) 10:932. https://doi.org/10.3390/polym10090932

    Article  Google Scholar 

  280. Balla VK, Kate KH, Satyavolu J, Singh P, Tadimeti JGD (2019) Additive manufacturing of natural fiber reinforced polymer composites: processing and prospects. Compos Part B Eng 174:106956. https://doi.org/10.1016/j.compositesb.2019.106956

    Article  Google Scholar 

  281. Badouard C, Traon F, Denoual C, Mayer-Laigle C, Paës G, Bourmaud A (2019) Exploring mechanical properties of fully compostable flax reinforced composite filaments for 3D printing applications. Ind Crops Prod 135:246–250. https://doi.org/10.1016/j.indcrop.2019.04.049

    Article  Google Scholar 

  282. Han SNMF, Taha MM, Mansor MR, Rahman MAA (2022) Investigation of tensile and flexural properties of kenaf fiber-reinforced acrylonitrile butadiene styrene composites fabricated by fused deposition modeling. J Eng Appl Sci 69:1–18. https://doi.org/10.1186/s44147-022-00109-0

    Article  Google Scholar 

  283. Liu Z, Lei Q, Xing S (2019) Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM. J Mater Res Technol 8:3743–3753. https://doi.org/10.1016/j.jmrt.2019.06.034

    Article  Google Scholar 

  284. Shanmugam V, Rajendran DJJ, Babu K, Rajendran S, Veerasimman A, Marimuthu U, Singh S, Das O, Neisiany RE, Hedenqvist MS, Berto F, Ramakrishna S (2021) The mechanical testing and performance analysis of polymer-fibre composites prepared through the additive manufacturing. Polym Test 93:106925. https://doi.org/10.1016/j.polymertesting.2020.106925

    Article  Google Scholar 

  285. Rafiee M, Abidnejad R, Ranta A, Ojha K, Karakoç A, Paltakari J (2021) Exploring the possibilities of FDM filaments comprising natural fiber-reinforced biocomposites for additive manufacturing. AIMS Mater Sci 8:524–537. https://doi.org/10.3934/matersci.2021032

    Article  Google Scholar 

  286. Mazur KE, Borucka A, Kaczor P, Gądek S, Bogucki R, Mirzewiński D, Kuciel S (2022) Mechanical, thermal and microstructural characteristic of 3D printed polylactide composites with natural fibers: wood, bamboo and cork. J Polym Environ 30:2341–2354. https://doi.org/10.1007/s10924-021-02356-3

    Article  Google Scholar 

  287. Cheng CY, Xie H, Xu Z, Li L, Jiang MN, Tang L, Yang KK, Wang YZ (2020) 4D printing of shape memory aliphatic copolyester via UV-assisted FDM strategy for medical protective devices. Chem Eng J 396:125242. https://doi.org/10.1016/j.cej.2020.125242

    Article  Google Scholar 

  288. Fischer NA, Robinson AL, Lee TJ, Calascione TM, Koerner L, Nelson-Cheeseman BB (2022) Magnetic annealing of extruded thermoplastic magnetic elastomers for 3D-Printing via FDM. J Magn Magn Mater 553:169266. https://doi.org/10.1016/j.jmmm.2022.169266

    Article  Google Scholar 

  289. Kačergis L, Mitkus R, Sinapius M (2019) Influence of fused deposition modeling process parameters on the transformation of 4D printed morphing structures. Smart Mater Struct 28:105042. https://doi.org/10.1088/1361-665X/ab3d18

    Article  Google Scholar 

  290. Ly ST, Kim JY (2017) 4D printing – fused deposition modeling printing with thermal-responsive shape memory polymers. Int J Precis Eng Manuf - Green Technol 4:267–272. https://doi.org/10.1007/s40684-017-0032-z

    Article  Google Scholar 

  291. Arif ZU, Khalid MY, Zolfagharian A, Bodaghi M (2022) 4D bioprinting of smart polymers for biomedical applications: recent progress, challenges, and future perspectives. React Funct Polym 179:105374. https://doi.org/10.1016/j.reactfunctpolym.2022.105374

    Article  Google Scholar 

  292. dos Santos J, de Oliveira RS, de Oliveira TV, Velho MC, Konrad MV, da Silva GS, Deon M, Beck RCR (2021) 3D printing and nanotechnology: a multiscale alliance in personalized medicine. Adv Funct Mater 31. https://doi.org/10.1002/adfm.202009691

  293. Cano-Vicent A, Tambuwala MM, Hassan SS, Barh D, Aljabali AAA, Birkett M, Arjunan A, Serrano-Aroca Á (2021) Fused deposition modelling: current status, methodology, applications and future prospects. Addit Manuf 47:102378. https://doi.org/10.1016/j.addma.2021.102378

    Article  Google Scholar 

  294. Dabbagh SR, Sarabi MR, Birtek MT, Seyfi S, Sitti M, Tasoglu S (2022) 3D-printed microrobots from design to translation. Nat Commun 13. https://doi.org/10.1038/s41467-022-33409-3

  295. Palmara G, Frascella F, Roppolo I, Chiappone A, Chiadò A (2021) Functional 3D printing: approaches and bioapplications. Biosens Bioelectron 175:112849. https://doi.org/10.1016/j.bios.2020.112849

    Article  Google Scholar 

  296. González-Henríquez CM, Sarabia-Vallejos MA, Rodriguez-Hernandez J (2019) Polymers for additive manufacturing and 4D-printing: materials, methodologies, and biomedical applications. Prog Polym Sci 94:57–116. https://doi.org/10.1016/j.progpolymsci.2019.03.001

    Article  Google Scholar 

  297. Tiwary VK, Arunkumar P, Deshpande AS, Rangaswamy N (2019) Surface enhancement of FDM patterns to be used in rapid investment casting for making medical implants. Rapid Prototyp J 25:904–914. https://doi.org/10.1108/RPJ-07-2018-0176

    Article  Google Scholar 

  298. Melocchi A, Briatico-vangosa F, Uboldi M, Parietti F, Turchi M, Von Zeppelin D, Maroni A, Zema L, Gazzaniga A, Zidan A (2021) Quality considerations on the pharmaceutical applications of fused deposition modeling 3D printing. Int J Pharm 592:119901. https://doi.org/10.1016/j.ijpharm.2020.119901

    Article  Google Scholar 

  299. Jeon S, Hoshiar AK, Kim K, Lee S, Kim E, Lee S, Kim JY, Nelson BJ, Cha HJ, Yi BJ, Choi H (2019) A magnetically controlled soft microrobot steering a guidewire in a three-dimensional phantom vascular network. Soft Robot 6:54–68. https://doi.org/10.1089/soro.2018.0019

    Article  Google Scholar 

  300. Fischer P, Ghosh A (2011) Magnetically actuated propulsion at low Reynolds numbers: towards nanoscale control. Nanoscale 3:557–563. https://doi.org/10.1039/c0nr00566e

    Article  Google Scholar 

  301. Bastola AK, Hossain M (2021) The shape – morphing performance of magnetoactive soft materials. Mater Des 211:1–25. https://doi.org/10.1016/j.matdes.2021.110172

    Article  Google Scholar 

  302. Kumar S, Singh R, Singh TP, Batish A (2021) Investigations for magnetic properties of PLA-PVC-Fe3O4-wood dust blend for self-assembly applications. J Thermoplast Compos Mater 34:929–951. https://doi.org/10.1177/0892705719857778

    Article  Google Scholar 

  303. Kumar S, Singh R, Singh TP, Batish A (2019) On mechanical characterization of 3-D printed PLA-PVC-wood dust-Fe3O4 composite. J Thermoplast Compos Mater 35:1–18. https://doi.org/10.1177/0892705719879195

    Article  Google Scholar 

  304. Calascione TM, Fischer NA, Lee TJ, Thatcher HG (2021) Controlling magnetic properties of 3D-printed magnetic elastomer structures via fused deposition modeling. AIP Adv 11:1–7. https://doi.org/10.1063/9.0000220

    Article  Google Scholar 

  305. Migliorini L, Villa SM, Santaniello T, Milani P (2022) Nanomaterials and printing techniques for 2D and 3D soft electronics. Nano Futur 6:1–16

    Google Scholar 

  306. Sarobol P, Cook A, Clem PG, Keicher D, Hirschfeld D, Hall AC, Bell NS (2016) Additive manufacturing of hybrid circuits. Annu Rev 1–22. https://doi.org/10.1146/annurev-matsci-070115-031632

  307. Zhou L, Fu J, He Y (2020) A review of 3D printing technologies for soft polymer materials. Adv Funct Mater 2000187:1–38. https://doi.org/10.1002/adfm.202000187

    Article  Google Scholar 

  308. Zhang P, Lei IM, Chen G, Lin J, Chen X, Zhang J, Cai C, Liang X, Liu J (2022) Integrated 3D printing of fl exible electroluminescent devices and soft robots. Nat Commun 13:1–8. https://doi.org/10.1038/s41467-022-32126-1

    Article  Google Scholar 

  309. Yang H, Leow WR, Chen X (2018) 3D printing of flexible electronic devices, Small. Methods 2:1–7. https://doi.org/10.1002/smtd.201700259

    Article  Google Scholar 

  310. Yan X, Tong Y, Wang X, Hou F, Liang J (2022) Extrusion-based 3D-printed supercapacitors: recent progress and challenges. Energy Environ Mater 5:800–822

    Article  Google Scholar 

  311. Wu W, Ye W, Wu Z, Geng P, Wang Y, Zhao J (2017) Influence of layer thickness, raster angle, deformation temperature and recovery temperature on the shape-memory effect of 3D-printed polylactic acid samples. Materials (Basel) 10:970. https://doi.org/10.3390/ma10080970

    Article  Google Scholar 

  312. Lee YC, Alshebly YS, Nafea M (2022) Joule heating activation of 4D printed conductive PLA actuators. 2022 IEEE Int Conf Autom Control Intell Syst I2CACIS 2022 – Proc 221–225. https://doi.org/10.1109/I2CACIS54679.2022.9815495

  313. Yang H, Leow WR, Wang T, Wang J, Yu J, He K, Qi D, Wan C, Chen X (2017) 3D printed photoresponsive devices based on shape memory composites. Adv Mater 29:1–7. https://doi.org/10.1002/adma.201701627

    Article  Google Scholar 

  314. Ahmed W, Alnajjar F, Zaneldin E, Al-Marzouqi AH, Gochoo M, Khalid S (2020) Implementing FDM 3D printing strategies using natural fibers to produce biomass composite. Materials (Basel) 13:4065. https://doi.org/10.3390/ma13184065

    Article  Google Scholar 

  315. KrapežTomec D, Kariž M (2022) Use of wood in additive manufacturing: review and future prospects. Polymers (Basel) 14:1174. https://doi.org/10.3390/polym14061174

    Article  Google Scholar 

  316. Le Duigou A, Castro M, Bevan R, Martin N (2016) 3D printing of wood fibre biocomposites: from mechanical to actuation functionality. Mater Des 96:106–114. https://doi.org/10.1016/j.matdes.2016.02.018

    Article  Google Scholar 

  317. Correa D, Papadopoulou A, Guberan C, Jhaveri N, Reichert S, Menges A, Tibbits S (2015) 3D-printed wood: programming hygroscopic material transformations, 3D Print. Addit Manuf 2:106–116. https://doi.org/10.1089/3dp.2015.0022

    Article  Google Scholar 

  318. de Kergariou C, Le Duigou A, Perriman A, Scarpa F (2023) Design space and manufacturing of programmable 4D printed continuous flax fibre polylactic acid composite hygromorphs. Mater Des 225:111472. https://doi.org/10.1016/j.matdes.2022.111472

    Article  Google Scholar 

  319. Le Duigou A, Barbé A, Guillou E, Castro M (2019) 3D printing of continuous flax fibre reinforced biocomposites for structural applications. Mater Des 180:107884. https://doi.org/10.1016/j.matdes.2019.107884

    Article  Google Scholar 

  320. Nguyen PD, Nguyen TQ, Tao QB, Vogel F, Nguyen-Xuan H (2022) A data-driven machine learning approach for the 3D printing process optimisation. Virtual Phys Prototyp. https://doi.org/10.1080/17452759.2022.2068446

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Silvain William TIEUNA TIENTCHEU: formal analysis; writing—original draft; writing—review and editing.

Joseph MARAE DJOUDA: conceptualization; methodology; writing—original draft; writing—review and editing; supervision.

Mohamed Ali BOUAZIZ: methodology; writing—original draft; writing—review and editing.

Elisabeth LACAZEDIEU: review and editing.

Corresponding author

Correspondence to Joseph Marae Djouda.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tientcheu, S.W.T., Djouda, J.M., Bouaziz, M.A. et al. A review on fused deposition modeling materials with analysis of key process parameters influence on mechanical properties. Int J Adv Manuf Technol 130, 2119–2158 (2024). https://doi.org/10.1007/s00170-023-12823-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12823-x

Keywords

Navigation