Skip to main content
Log in

Dopant Segregation and Heat Treatment Effects on the Electrical Properties of Polycrystalline Silicon thin Films

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper reports the effect of heat treatment on the electronic activity of grain boundaries of polycrystalline silicon. The results obtained show that for the same concentration of doping, the arsenic doped films are more resistive and have less free carriers than boron doped films. The arsenic atoms have a greater tendency to segregate at the grain boundaries than boron atoms. We also noticed that the heat treatment before implantation reduces the number of trap carriers and the quantity of doping atoms at the grain boundaries. For low doping, the concentration of the free charge carriers improves after the heat treatment by 100 % and 23 % for arsenic and boron doping respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zaidi B, Hadjoudja B, Felfli H, Chouial B, Chibani A (2011) Effet des traitements thermiques sur le comportement électrique des couches de silicium poly-cristallin pour des applications photovoltaïques. Revue de Métallurgie 108:443–446

    Article  CAS  Google Scholar 

  2. Haddad A, Inokuma T, Kurata Y, Hasegawa S (2005) Characterization of Structure and Role of Different Textures in Polycrystalline Si Films. J Non-Cryst Solids 351:2107–2114

    Article  Google Scholar 

  3. Hadjoudja B, Chibani A (2006) Modèle global pour la conduction électrique dans des couches de silicium polycristallin. Ann Chim Sci Mat 31:121–134

    Article  CAS  Google Scholar 

  4. Yu B, Ju DH, Lee WC, Kepler N, King TJ, Hu C (1998) Gate Engineering for Deep-Submicron CMOS Transistors. IEEE Trans Elec Dev 45:1253–1262

    Article  CAS  Google Scholar 

  5. Mahamdi R, Mansour F, Scheid E, Boyer BT, Jalabert L (2001) Boron Diffusion and Activation during Heat Treatment in Heavily Doped Polysilicon Thin Films for P + Metal-Oxide-Semiconductor Transistors Gates. Jpn J Appl Phys 40: 6723–6727

    Article  CAS  Google Scholar 

  6. Zaidi B, Hadjoudja B, Felfli H, Chibani A (2011) Influence of doping and heat treatments on carriers mobility in polycrystalline silicon thin films for photovoltaic application. Turk J Phys 35: 185–188

    CAS  Google Scholar 

  7. Zaidi B, Hadjoudja B, Chouial B, Gagui S, Felfli H, Chibani A (2015) Hydrogenation Effect on Electrical Behavior of Polysilicon Thin Films. Silicon 7:275–278

    Article  CAS  Google Scholar 

  8. Steffens S, Becker C, Zollondz JH, Chowdhury A, Slaoui A, Lindekugel S, Schubert U, Evans R, Rech B (2013) Defect annealing processes for polycrystalline silicon thin-film solar cells. Mater Sci Eng B 178:670–675

    Article  CAS  Google Scholar 

  9. Zaidi B, Hadjoudja B, Chouial B, Gagui S, Felfli H, Magramene A, Chibani A (2015) Effect of Secondary Annealing on Electrical Properties of Polysilicon Thin Films. Silicon 7:293–295

    Article  CAS  Google Scholar 

  10. Brotherton S D (1995) Polycrystalline silicon thin film transistor. Semicond Sci Tech 10:721–738

    Article  CAS  Google Scholar 

  11. Lee KF, Ginnsons JF, Saraswat KC, Kamins TI (1979) Thin film MOSFET’s fabricated in laser-annealed polycrystalline silicon. Appl Phys Lett 35:173–175

    Article  CAS  Google Scholar 

  12. Kamins T (2012) Polycrystalline silicon for integrated circuit applications. Kluver Academic Publishers, Massachusetts

    Google Scholar 

  13. Wong H (2002) Recent developments in silicon optoelectronic devices. Microelectron Reliab 42:317–326

    Article  Google Scholar 

  14. Lifshitz N (1983) Solubility of implanted dopants in polysilicon: phosphorus and arsenic. J Elec Soc 130:2464–2467

    Article  CAS  Google Scholar 

  15. Shibata T, Lee KF, Gibbons JF, Magee TJ, Peng J, Hong JD (1981) Resistivity reduction in heavily doped polycrystalline silicon using CW-laser and pulsed-laser annealing. J Appl Phys 52:3625–3632

    Article  CAS  Google Scholar 

  16. Masetti G, Severi M, Solmi S (1983) Modeling of carrier mobility against carrier concentration in arsenic, phosphorus and boron doped- silicon. IEEE Trans Elec Dev ED30: 764–769

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Zaidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaidi, B., Hadjoudja, B., Shekhar, C. et al. Dopant Segregation and Heat Treatment Effects on the Electrical Properties of Polycrystalline Silicon thin Films. Silicon 8, 513–516 (2016). https://doi.org/10.1007/s12633-015-9359-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9359-7

Keywords

Navigation