Skip to main content
Log in

Random forests based classification of tool wear using vibration signals and wear area estimation from tool image data

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In precision manufacturing, tool condition monitoring is critical for improving surface finish, increasing efficiency, and lowering manufacturing costs. The present work discusses a complete workflow to accurately predict the tool condition based on vibration data obtained during the turning operation performed on a lathe. An image processing methodology is applied to compute the tool wear area. A specialized misclassification cost matrix is used to train the random forests algorithm to improve the classification of tool conditions. This model can correctly classify tool condition from vibration signals of 0.5 s with an accuracy of 97%. Furthermore, this investigation can be modified to suit the real-world classification of the tool condition based on tool wear requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang S, Wan J, Zhang D, Li D, Zhang C (2016) Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination. Comput Networks 101:158–168. https://doi.org/10.1016/j.comnet.2015.12.017

    Article  Google Scholar 

  2. Huang Z, Zhu J, Lei J, Li X, Tian F (2021) Tool wear monitoring with vibration signals based on short-time Fourier transform and deep convolutional neural network in milling. Math Probl Eng 2021:1–14. https://doi.org/10.1155/2021/9976939

    Article  Google Scholar 

  3. Siddhpura A, Paurobally R (2013) A review of flank wear prediction methods for tool condition monitoring in a turning process. Int J Adv Manuf Technol 65(1–4):371–393. https://doi.org/10.1007/s00170-012-4177-1

    Article  Google Scholar 

  4. D. Dimla, ‘Sensor signals for tool-wear monitoring in metal cutting operations—a review of methods’, Int. J. Mach. Tools Manuf., vol. 40, no. 8, pp. 1073–1098, 2000, [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0890695599001224.

  5. Serin G, Sener B, Ozbayoglu AM, Unver HO (2020) Review of tool condition monitoring in machining and opportunities for deep learning. Int J Adv Manuf Technol 109(3–4):953–974. https://doi.org/10.1007/s00170-020-05449-w

    Article  Google Scholar 

  6. Sick B (2002) Online and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research. Mech Syst Signal Process 16(4):487–546. https://doi.org/10.1006/mssp.2001.1460

    Article  Google Scholar 

  7. Wang W, Wong YS, Hong GS (2005) Flank wear measurement by successive image analysis. Comput Ind 56(8–9):816–830. https://doi.org/10.1016/j.compind.2005.05.009

    Article  Google Scholar 

  8. S. Dutta, S. K. Pal, and R. Sen, Digital Image Processing in Machining, no. January 2014. 2014.

  9. Lanzetta M (2001) A new flexible high-resolution vision sensor for tool condition monitoring. J Mater Process Technol 119(1–3):73–82. https://doi.org/10.1016/S0924-0136(01)00878-0

    Article  Google Scholar 

  10. Sortino M (2003) Application of statistical filtering for optical detection of tool wear. Int J Mach Tools Manuf 43(5):493–497. https://doi.org/10.1016/S0890-6955(02)00266-3

    Article  Google Scholar 

  11. Fadare DA, Oni AO (2009) Development and application of a machine vision system for measurement of tool wear. J Eng Appl Sci 4(4):42–49

    Google Scholar 

  12. R Schmitt, Y Cai, and A Pavim (2012) ‘Machine vision system for inspecting flank wear on cutting tools’, ACEEE Int. J. Control Syst. Instrum, 03(01): 27–31. 01.IJCSI.03.01.13.

  13. Kerr D, Pengilley J, Garwood R (2006) Assessment and visualisation of machine tool wear using computer vision. Int J Adv Manuf Technol 28(7–8):781–791. https://doi.org/10.1007/s00170-004-2420-0

    Article  Google Scholar 

  14. Castejón M, Alegre E, Barreiro J, Hernández LK (2007) Online tool wear monitoring using geometric descriptors from digital images. Int J Mach Tools Manuf 47(12–13):1847–1853. https://doi.org/10.1016/j.ijmachtools.2007.04.001

    Article  Google Scholar 

  15. Alegre E, Alaiz-Rodríguez R, Barreiro J, Ruiz J (2009) Kulumisjälje kontuuride kasutamise ja klassifitseerimise meetodid metallide lõiketöötlemisel püsivusaja optimeerimiseks. Est J Eng 15(1):3–12. https://doi.org/10.3176/eng.2009.1.01

    Article  Google Scholar 

  16. Sun WH, Yeh SS (2018) Using the machine vision method to develop an on-machine insert condition monitoring system for computer numerical control turning machine tools. Mater 11(10):1977. https://doi.org/10.3390/ma11101977

    Article  Google Scholar 

  17. Salgado DR, Alonso FJ (2006) Tool wear detection in turning operations using singular spectrum analysis. J Mater Process Technol 171(3):451–458. https://doi.org/10.1016/j.jmatprotec.2005.08.005

    Article  Google Scholar 

  18. Jiang X, Shen C, Shi J, Zhu Z (2018) Initial center frequency-guided VMD for fault diagnosis of rotating machines. J Sound Vib 435:36–55. https://doi.org/10.1016/j.jsv.2018.07.039

    Article  Google Scholar 

  19. Saglam H, Unuvar A (2003) Tool condition monitoring in milling based on cutting forces by a neural network. Int J Prod Res 41(7):1519–1532. https://doi.org/10.1080/0020754031000073017

    Article  Google Scholar 

  20. Huang SN, Tan KK, Wong YS, de Silva CW, Goh HL, Tan WW (2007) Tool wear detection and fault diagnosis based on cutting force monitoring. Int J Mach Tools Manuf 47(3–4):444–451. https://doi.org/10.1016/j.ijmachtools.2006.06.011

    Article  Google Scholar 

  21. Sundaram S, Senthilkumar P, Kumaravel A, Manoharan N (2008) Study of flank wear in single point cutting tool using. Network 3(4):32–36

    Google Scholar 

  22. Hsieh WH, Lu MC, Chiou SJ (2012) Application of backpropagation neural network for spindle vibration-based tool wear monitoring in micro-milling. Int J Adv Manuf Technol 61(1–4):53–61. https://doi.org/10.1007/s00170-011-3703-x

    Article  Google Scholar 

  23. Krishnakumar P, Rameshkumar K, Ramachandran KI (2018) Machine learning based tool condition classification using acoustic emission and vibration data in high speed milling process using wavelet features. Intell Decis Technol 12(2):265–282. https://doi.org/10.3233/IDT-180332

    Article  Google Scholar 

  24. Nguyen VT, Nguyen VH, Pham VT (2020) Deep stacked auto-encoder network based tool wear monitoring in the face milling process. Stroj Vestnik/Journal Mech Eng 66(4):227–234. https://doi.org/10.5545/sv-jme.2019.6285

    Article  Google Scholar 

  25. Dai L et al (2020) An improved deep learning model for online tool condition monitoring using output power signals. Shock Vib 2020:1–12. https://doi.org/10.1155/2020/8843314

    Article  Google Scholar 

  26. Zhao R, Yan R, Wang J, Mao K (2017) Learning to monitor machine health with convolutional Bi-directional LSTM networks. Sensors 17(2):1–18. https://doi.org/10.3390/s17020273

    Article  Google Scholar 

  27. Kwon Y, Fischer GW (2003) A novel approach to quantifying tool wear and tool life measurements for optimal tool management. Int J Mach Tools Manuf 43(4):359–368. https://doi.org/10.1016/S0890-6955(02)00271-7

    Article  Google Scholar 

  28. Breiman L (2001) Random forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  29. A Cutler, DR Cutler, and JR Stevens (2012) ‘Ensemble machine learning’. Ensemble Mach. Learn. https://doi.org/10.1007/978-1-4419-9326-7

  30. Ali J, Khan R, Ahmad N, Maqsood I (2012) Random forests and decision trees. Int J Comput Sci Issues 9(5):272–278

    Google Scholar 

  31. Abhang LB, Hameedullah M (2012) Optimization of machining parameters in steel turning operation by Taguchi method. Procedia Eng 38:40–48. https://doi.org/10.1016/j.proeng.2012.06.007

    Article  Google Scholar 

  32. Sikdar SK, Chen M (2002) Relationship between tool flank wear area and component forces in single point turning. J Mater Process Technol 128(1–3):210–215. https://doi.org/10.1016/S0924-0136(02)00453-3

    Article  Google Scholar 

  33. Thakre AA, Lad AV, Mala K (2019) Measurements of tool wear parameters using machine vision system. Model Simul Eng 2019:1–10. https://doi.org/10.1155/2019/1876489

    Article  Google Scholar 

  34. Sun Y, Wong AKC, Kamel MS (2009) Classification of imbalanced data: a review. Int J Pattern Recognit Artif Intell 23(4):687–719. https://doi.org/10.1142/S0218001409007326

    Article  Google Scholar 

  35. Jiang Y, Cukic B (2009) Misclassification cost-sensitive fault prediction models. ACM Int Conf Proceeding Ser. https://doi.org/10.1145/1540438.1540466

    Article  Google Scholar 

  36. He K, Gkioxari G, Dollár P, Girshick R (2020) Mask R-CNN. IEEE Trans Pattern Anal Mach Intell 42(2):386–397. https://doi.org/10.1109/TPAMI.2018.2844175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basil Cardoz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoz, B., Shaikh, H.N.E., Mulani, S.M. et al. Random forests based classification of tool wear using vibration signals and wear area estimation from tool image data. Int J Adv Manuf Technol 126, 3069–3081 (2023). https://doi.org/10.1007/s00170-023-11173-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11173-y

Keywords

Navigation