Skip to main content
Log in

Cutting temperature measurement and prediction in machining processes: comprehensive review and future perspectives

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

During machining processes, a large amount of heat is generated due to plastic deformation, in a very small area of the cutting tool. This high temperature strongly influences chip formation mechanisms, tool wear, tool life, and workpiece surface integrity and quality. In this sense, knowing the temperature at various points of tool, chip, and workpiece during machining processes is of utmost importance to effectively optimize cutting parameters, improve machinability and product quality, reduce machining costs, and increase tool life and productivity. This paper presents a review of the various methods for temperature measurement and prediction in machining processes, being the different methods discussed and evaluated regarding its merits and demerits. The most suitable method for a given application depends on several aspects, such as cost, size, shape, accuracy, response time, and temperature range. Lastly, some future perspectives for real-time cutting temperature monitoring in the scope of Industry 4.0 and 5.0 are outlined, as well as being presented a new field of tools capable of measuring and controlling cutting temperature, called smart cutting tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

adapted from reference [27])

Fig. 4
Fig. 5
Fig. 6

reproduced with permission from reference [46])

Fig. 7
Fig. 8

reproduced with permission from reference [61])

Fig. 9

reproduced with permission from reference [69]) and b) Li et al. (reproduced with permission from reference [71])

Fig. 10

adapted from reference [78])

Fig. 11
Fig. 12

reproduced with permission from reference [80])

Fig. 13

reproduced with permission from reference [83])

Fig. 14
Fig. 15

reproduced with permission from reference [90])

Fig. 16

reproduced with permission from reference [97])

Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

reproduced with permission from reference [164])

Fig. 22
Fig. 23

reproduced with permission from reference [185])

Fig. 24

reproduced with permission from reference [185])

Similar content being viewed by others

Availability of data and material

All data used in this work have been properly cited within the article.

References

  1. Astakhov VP, Outeiro J (2019) Importance of temperature in metal cutting and its proper measurement/modeling. In Davim J (ed) Measurement in Machining and Tribology. Springer, pp 1–47

    Google Scholar 

  2. Guimarães B, Figueiredo D, Fernandes CM et al (2019) Laser machining of WC-Co green compacts for cutting tools manufacturing. Int J Refract Met Hard Mater 81:316–324. https://doi.org/10.1016/j.ijrmhm.2019.03.018

    Article  Google Scholar 

  3. O’Sullivan D, Cotterell M (2001) Temperature measurement in single point turning. J Mater Process Technol 118:301–308. https://doi.org/10.1016/S0924-0136(01)00853-6

    Article  Google Scholar 

  4. Abukhshim NA, Mativenga PT, Sheikh MA (2006) Heat generation and temperature prediction in metal cutting : a review and implications for high speed machining. Int J Mach Tools Manuf 46:782–800. https://doi.org/10.1016/j.ijmachtools.2005.07.024

    Article  Google Scholar 

  5. Sakkaki M, Sadegh Moghanlou F, Vajdi M et al (2019) The effect of thermal contact resistance on the temperature distribution in a WC made cutting tool. Ceram Int 45:22196–22202. https://doi.org/10.1016/j.ceramint.2019.07.241

    Article  Google Scholar 

  6. Norouzifard V, Hamedi M (2014) A three-dimensional heat conduction inverse procedure to investigate tool–chip thermal interaction in machining process. Int J Adv Manuf Technol 74:1637–1648. https://doi.org/10.1007/s00170-014-6119-6

    Article  Google Scholar 

  7. Zhao J, Liu Z, Wang B et al (2021) Tool coating effects on cutting temperature during metal cutting processes: comprehensive review and future research directions. Mech Syst Signal Process 150:107302. https://doi.org/10.1016/j.ymssp.2020.107302

    Article  Google Scholar 

  8. Bhirud NL, Gawande RR (2017) Measurement and prediction of cutting temperatures during dry milling: review and discussions. J Brazilian Soc Mech Sci Eng 39:5135–5158. https://doi.org/10.1007/s40430-017-0869-7

    Article  Google Scholar 

  9. Davies MA, Ueda T, M’Saoubi R et al (2007) On the measurement of temperature in material removal processes. CIRP Ann - Manuf Technol 56:581–604. https://doi.org/10.1016/j.cirp.2007.10.009

    Article  Google Scholar 

  10. Grzesik W (2017) Heat in metal cutting. In: Grzesik W (ed) Advanced machining processes of metallic materials. Elsevier, pp 163–182

    Chapter  Google Scholar 

  11. Trent EM, Wright PK (2000) Heat in metal cutting. In Metal cutting, Fourth Edi. Butterworth-Heinemann, pp 97–131

  12. Hao G, Liu Z (2020) The heat partition into cutting tool at tool-chip contact interface during cutting process: a review. Int J Adv Manuf Technol 108:393–411. https://doi.org/10.1007/s00170-020-05404-9

    Article  Google Scholar 

  13. Akhil CS, Ananthavishnu MH, Akhil CK et al (2016) Measurement of cutting temperature during machining. J Mech Civ Eng 13:108–122. https://doi.org/10.9790/1684-130201102116

    Article  Google Scholar 

  14. Guimarães B, Fernandes CM, Figueiredo D et al (2020) Effect of laser surface texturing on the wettability of WC-Co cutting tools. Int J Adv Manuf Technol 111:1991–1999. https://doi.org/10.1007/s00170-020-06155-3

    Article  Google Scholar 

  15. Kovac P, Gostimirovic M, Rodic D, Savkovic B (2019) Using the temperature method for the prediction of tool life in sustainable production. Measurement 133:320–327. https://doi.org/10.1016/j.measurement.2018.09.074

    Article  Google Scholar 

  16. Thompson B (1798) An inquiry concerning the source of the heat which is excited by friction. Philos Trans R Soc London 88:80–102. https://doi.org/10.1098/rstl.1798.0006

  17. Joule JP (1850) On the mechanical equivalent of heat. Philos Trans R Soc London 140:61–82. https://doi.org/10.1098/rstl.1850.0004

    Article  Google Scholar 

  18. Taylor FW (1907) On the art of cutting metals. Am Soc Mech Eng N Y

    Google Scholar 

  19. Grzesik W (2017) Tool Wear And Damage. In: Grzesik W (ed) Advanced machining processes of metallic materials. Elsevier, pp 215–239

    Chapter  Google Scholar 

  20. Goyal A, Dhiman S, Kumar S, Sharma R (2014) A study of experimental temperature measuring techniques used in metal cutting. Jordan J Mech Ind Eng 8:82–93

    Google Scholar 

  21. Bobzin K (2017) High-performance coatings for cutting tools. CIRP J Manuf Sci Technol 18:1–9. https://doi.org/10.1016/j.cirpj.2016.11.004

    Article  Google Scholar 

  22. Shore H (1925) Thermoelectric measurement of cutting tool temperatures. J Washingt Acad Sci 15:85–88

    Google Scholar 

  23. Gottwein K (1925) Measurement of the temperatures in the turning of steels. Maschinenbau 4:1129–1135

    Google Scholar 

  24. Herbert EG (1926) The measurement of cutting temperatures. Proc Inst Mech Eng 110:289–329. https://doi.org/10.1243/PIME_PROC_1926_110_018_02

    Article  Google Scholar 

  25. Longbottom JM, Lanham JD (2005) Cutting temperature measurement while machining-a review. Aircr Eng Aerosp Technol 77:122–130. https://doi.org/10.1108/00022660510585956

    Article  Google Scholar 

  26. Brito RF, Carvalho SR, Lime e Silva SMM (2015) Experimental investigation of thermal aspects in a cutting tool using comsol and inverse problem. Appl Therm Eng 86:60–68. https://doi.org/10.1016/j.applthermaleng.2015.03.083

    Article  Google Scholar 

  27. Childs P (2001) Technique selection. In: Childs P (ed) Practical temperature measurement. Butterworth-Heinemann, pp 305–323

    Chapter  Google Scholar 

  28. Komanduri R, Hou ZB (2001) A review of the experimental techniques for the measurement of heat and temperatures generated in some manufacturing processes and tribology. Tribol Int 34:653–682. https://doi.org/10.1016/S0301-679X(01)00068-8

    Article  Google Scholar 

  29. Claggett TJ, Worrall RW (2003) Thermocouples. In: Lipták B (ed) Instrument engineers’ handbook: process measurement and analysis, fourth Edi. CRC Press, pp 673–696

    Google Scholar 

  30. Kucharski J (2002) Thermocouple temperature sensors. In: Ibrahim D (ed) Microcontroller based temperature monitoring and control. Elsevier, pp 63–85

    Google Scholar 

  31. Damarla S, Kundu P (2011) Classification of unknown thermocouple types using similarity factor measurement. Sens Transducers 124:11–18

    Google Scholar 

  32. Hagart-Alexander C (2010) Temperature measurement. In: Boyes W (ed) Instrumentation reference book, fourth Edi. Elsevier, pp 269–326

    Chapter  Google Scholar 

  33. Shaw MC (2005) Metal cutting principles, second Edi. Oxford University Press, New York

    Google Scholar 

  34. Stephenson D, Agapiou J (2016) Metal cutting theory and practice. CRC Press, Third Edi

    Book  Google Scholar 

  35. Chen L, Tai BL, Chaudhari RG et al (2017) Machined surface temperature in hard turning. Int J Mach Tools Manuf 121:10–21. https://doi.org/10.1016/j.ijmachtools.2017.03.003

    Article  Google Scholar 

  36. Bagherzadeh A, Budak E (2017) Investigation of machinability in turning of difficult-to-cut materials using a new cryogenic cooling approach. Tribol Int 119:510–520. https://doi.org/10.1016/j.triboint.2017.11.033

    Article  Google Scholar 

  37. Kus A, Isik Y, Cakir MC et al (2015) Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting. Sensors 15:1274–1291. https://doi.org/10.3390/s150101274

    Article  Google Scholar 

  38. Le Coz G, Marinescu M, Devillez A et al (2012) Measuring temperature of rotating cutting tools: application to MQL drilling and dry milling of aerospace alloys. Appl Therm Eng 36:434–441. https://doi.org/10.1016/j.applthermaleng.2011.10.060

    Article  Google Scholar 

  39. Karaguzel U, Bakkal M, Budak E (2016) Modeling and measurement of cutting temperatures in milling. Procedia CIRP 46:173–176. https://doi.org/10.1016/j.procir.2016.03.182

    Article  Google Scholar 

  40. Campidelli AFV, Lima HV, Abrão AM, Maia AAT (2019) Development of a wireless system for milling temperature monitoring. Int J Adv Manuf Technol 104:1551–1560. https://doi.org/10.1007/s00170-019-04088-0

    Article  Google Scholar 

  41. Il A, Chatelain JF, Lalonde JF et al (2018) An experimental investigation of the influence of cutting parameters on workpiece internal temperature during Al2024-T3 milling. Int J Adv Manuf Technol 97:413–426. https://doi.org/10.1007/s00170-018-1948-3

    Article  Google Scholar 

  42. Gupta V, Pandey PM, Mridha AR, Gupta RK (2017) Effect of various parameters on the temperature distribution in conventional and diamond coated hollow tool bone drilling: a comparative study. Procedia Eng 184:90–98. https://doi.org/10.1016/j.proeng.2017.04.074

    Article  Google Scholar 

  43. Karpat Y, Karagüzel U, Bahtiyar O (2020) A thermo-mechanical model of drill margin-borehole surface interface contact conditions in dry drilling of thick CFRP laminates. Int J Mach Tools Manuf 154:103565. https://doi.org/10.1016/j.ijmachtools.2020.103565

    Article  Google Scholar 

  44. Shalaby MA, El Hakim MA, Veldhuis SC (2018) A thermal model for hard precision turning. Int J Adv Manuf Technol 98:2401–2413. https://doi.org/10.1007/s00170-018-2389-8

    Article  Google Scholar 

  45. Hoyne AC, Nath C, Kapoor SG (2015) On cutting temperature measurement during titanium machining with an atomization-based cutting fluid spray system. J Manuf Sci Eng 137:024502. https://doi.org/10.1115/1.4028898

    Article  Google Scholar 

  46. Moura RR, da Silva MB, Machado ÁR, Sales WF (2015) The effect of application of cutting fluid with solid lubricant in suspension during cutting of Ti-6Al-4V alloy. Wear 332–333:762–771. https://doi.org/10.1016/j.wear.2015.02.051

    Article  Google Scholar 

  47. Zhang X, Lu Z, Peng Z et al (2018) Development of a tool-workpiece thermocouple system for comparative study of the cutting temperature when high-speed ultrasonic vibration cutting Ti-6Al-4V alloys with and without cutting fluids. Int J Adv Manuf Technol 96:237–246. https://doi.org/10.1007/s00170-018-1600-2

    Article  Google Scholar 

  48. Kaminise AK, Guimarães G, da Silva MB (2014) Development of a tool-work thermocouple calibration system with physical compensation to study the influence of tool-holder material on cutting temperature in machining. Int J Adv Manuf Technol 73:735–747. https://doi.org/10.1007/s00170-014-5898-0

    Article  Google Scholar 

  49. Khan MA, Mia M, Dhar NR (2017) High-pressure coolant on flank and rake surfaces of tool in turning of Ti-6Al-4V: investigations on forces, temperature, and chips. Int J Adv Manuf Technol 90:1977–1991. https://doi.org/10.1007/s00170-016-9511-6

    Article  Google Scholar 

  50. Lima HV, Campidelli AFV, Maia AAT, Abrão AM (2018) Temperature assessment when milling AISI D2 cold work die steel using tool-chip thermocouple, implanted thermocouple and finite element simulation. Appl Therm Eng 143:532–541. https://doi.org/10.1016/j.applthermaleng.2018.07.107

    Article  Google Scholar 

  51. Wang H, Sun J, Li J et al (2016) Evaluation of cutting force and cutting temperature in milling carbon fiber-reinforced polymer composites. Int J Adv Manuf Technol 82:1517–1525. https://doi.org/10.1007/s00170-015-7479-2

    Article  Google Scholar 

  52. Stephenson DA (1993) Tool-work thermocouple temperature measurements—theory and implementation issues. J Manuf Sci Eng 115:432–437. https://doi.org/10.1115/1.2901786

    Article  Google Scholar 

  53. Santos MC Jr, Araújo Filho JS, Barrozo MAS et al (2017) Development and application of a temperature measurement device using the tool-workpiece thermocouple method in turning at high cutting speeds. Int J Adv Manuf Technol 89:2287–2298. https://doi.org/10.1007/s00170-016-9281-1

    Article  Google Scholar 

  54. Dosbaeva GK, El Hakim MA, Shalaby MA et al (2015) Cutting temperature effect on PCBN and CVD coated carbide tools in hard turning of D2 tool steel. Int J Refract Met Hard Mater 50:1–8. https://doi.org/10.1016/j.ijrmhm.2014.11.001

    Article  Google Scholar 

  55. Arndt G, Brown RH (1967) On the temperature distribution in orthogonal machining. Int J Mach Tool Des Res 7:39–53. https://doi.org/10.1016/0020-7357(67)90024-8

    Article  Google Scholar 

  56. Balint JG, Brown RH (1964) A note on the investigation of rake face tool wear. Int J Mach Tool Des Res 4:117–122. https://doi.org/10.1016/0020-7357(64)90003-4

    Article  Google Scholar 

  57. Dubey V, Sharma AK, Singh RK (2019) A technological review on temperature measurement techniques in various machining processes. In: Prakash C, Krolczyk G, Singh S, Pramanik A (eds) Advances in metrology and measurement of engineering surfaces. Springer, pp 55–67

    Google Scholar 

  58. Hirao M (1989) Determining temperature distribution on flank face of cutting tool. J Mater Shap Technol 6:143–148. https://doi.org/10.1007/BF02833765

    Article  Google Scholar 

  59. Black SCE, Rowe WB, Qi HS, Mills B (1995) Temperature measurement in grinding. In Kochhar AK (ed) Proceedings of the Thirty-First International Matador Conference. Springer, pp 409–413

  60. Agapiou JS, Stephenson DA (1994) Analytical and experimental studies of drill temperatures. J Eng Ind 116:54–60. https://doi.org/10.1115/1.2901809

    Article  Google Scholar 

  61. Dewes RC, Ng E, Chua KS et al (1999) Temperature measurement when high speed machining hardened mould/die steel. J Mater Process Technol 92–93:293–301. https://doi.org/10.1016/S0924-0136(99)00116-8

    Article  Google Scholar 

  62. Baohai W, Di C, Xiaodong H et al (2016) Cutting tool temperature prediction method using analytical model for end milling. Chinese J Aeronaut 29:1788–1794. https://doi.org/10.1016/j.cja.2016.03.011

    Article  Google Scholar 

  63. Li T, Shi T, Tang Z et al (2020) Temperature monitoring of the tool-chip interface for PCBN tools using built-in thin-film thermocouples in turning of titanium alloy. J Mater Process Technol 275:116376. https://doi.org/10.1016/j.jmatprotec.2019.116376

    Article  Google Scholar 

  64. Chen Y, Jiang H, Zhao W et al (2014) Fabrication and calibration of Pt-10%Rh/Pt thin film thermocouples. Measurement 48:248–251. https://doi.org/10.1016/j.measurement.2013.11.018

    Article  Google Scholar 

  65. Li J, Tao B, Huang S, Yin Z (2018) Built-in thin film thermocouples in surface textures of cemented carbide tools for cutting temperature measurement. Sens Actuators A Phys 279:663–670. https://doi.org/10.1016/j.sna.2018.07.017

    Article  Google Scholar 

  66. Li T, Shi T, Tang Z et al (2021) Real-time tool wear monitoring using thin-film thermocouple. J Mater Process Technol 288:116901. https://doi.org/10.1016/j.jmatprotec.2020.116901

    Article  Google Scholar 

  67. Kesriklioglu S, Morrow JD, Pfefferkorn FE (2018) Tool-chip interface temperature measurement in interrupted and continuous oblique cutting. J Manuf Sci Eng 140:051013. https://doi.org/10.1115/1.4038140

    Article  Google Scholar 

  68. Kesriklioglu S, Arthur C, Morrow JD, Pfefferkorn FE (2019) Characterization of tool–chip interface temperature measurement with thermocouple fabricated directly on the rake face. J Manuf Sci Eng 141:091008. https://doi.org/10.1115/1.4044035

    Article  Google Scholar 

  69. Sugita N, Ishii K, Furusho T et al (2015) Cutting temperature measurement by a micro-sensor array integrated on the rake face of a cutting tool. CIRP Ann - Manuf Technol 64:77–80. https://doi.org/10.1016/j.cirp.2015.04.079

    Article  Google Scholar 

  70. Huang S, Tao B, Li J et al (2018) Estimation of the time and space-dependent heat flux distribution at the tool-chip interface during turning using an inverse method and thin film thermocouples measurement. Int J Adv Manuf Technol 99:1531–1543. https://doi.org/10.1007/s00170-018-2585-6

    Article  Google Scholar 

  71. Li J, Tao B, Huang S, Yin Z (2019) Cutting tools embedded with thin film thermocouples vertically to the rake face for temperature measurement. Sens Actuators A Phys 296:392–399. https://doi.org/10.1016/j.sna.2019.07.043

    Article  Google Scholar 

  72. Cui Y, Liu Q, Wang L et al (2018) Research on milling temperature measuring tool embedded with NiCr/NiSi thin film thermocouple. Procedia CIRP 72:1457–1462. https://doi.org/10.1016/j.procir.2018.03.109

    Article  Google Scholar 

  73. Bobzin K, Brögelmann T, Kruppe NC, Janowitz J (2021) Smart PVD hard coatings with temperature sensor function. Surf Coatings Technol 423:127631. https://doi.org/10.1016/j.surfcoat.2021.127631

    Article  Google Scholar 

  74. Schallbroach H, Long M (1943) Measurement of cutting temperature using temperature-indicating paints. J Assoc Ger Eng 87:15–19

    Google Scholar 

  75. Bickel E, Widmer W (1954) Die Temperaturen an der Werkzeugschneide. Zurich, Switzerland: Industrielle Organization

  76. Okushima K, Shimoda R (1957) The cutting temperature Bull JSME 23:73–77

    Google Scholar 

  77. Rossetto S, Koch U (1971) An investigation of temperature distribution on tool flank surface. Ann CIRP 19:551–557

    Google Scholar 

  78. Ostafiev V, Kharkevich A, Weinert K, Ostafiev S (1999) Tool heat transfer in orthogonal metal cutting. J Manuf Sci Eng 121:541–549. https://doi.org/10.1115/1.2833043

    Article  Google Scholar 

  79. Murthy TG, Madariaga J, Huang CY (2014) Luminescent molecular sensors for assessment of temperature field in machining. Tribol Lett 54:129–137. https://doi.org/10.1007/s11249-014-0317-0

    Article  Google Scholar 

  80. Kato S, Yamaguchi K, Watanabe Y, Hiraiwa Y (1976) Measurement of temperature distribution within tool using powders of constant melting point. J Eng Ind 98:607–613. https://doi.org/10.1115/1.3438946

    Article  Google Scholar 

  81. Lo Casto S, Lo Valvo E, Micari F (1989) Measurement of temperature distribution within tool in metal cutting. Experimental tests and numerical analysis. J Mech Work Technol 20:35–46. https://doi.org/10.1016/0378-3804(89)90016-8

    Article  Google Scholar 

  82. Lo Casto S, Lo Valvo E, Piacentini M et al (1994) Cutting temperatures evaluation in ceramic tools: experimental tests, numerical analysis and SEM observations. CIRP Ann - Manuf Technol 43:73–76. https://doi.org/10.1016/S0007-8506(07)62167-2

    Article  Google Scholar 

  83. Kato T, Fujii H (1996) PVD film method for measuring the temperature distribution in cutting tools. J Eng Ind 118:117–122. https://doi.org/10.1115/1.2803632

    Article  Google Scholar 

  84. Kato T, Fujii H (1997) Temperature measurement of workpiece in surface grinding by PVD film method. J Manuf Sci Eng 119:689–694. https://doi.org/10.1115/1.2836810

    Article  Google Scholar 

  85. Kato T, Fujii H (2004) Temperature measurement in a solid body heated by laser beam. Int J Mach Tools Manuf 44:927–931. https://doi.org/10.1016/j.ijmachtools.2004.01.014

    Article  Google Scholar 

  86. Wright PK, Trent EM (1973) Metallographic methods of determining temperature gradients in cutting tools. J Iron Steel Inst 211:364–388

    Google Scholar 

  87. Smart EF, Trent EM (1975) Temperature distribution in tools used for cutting iron, titanium and nickel. Int J Prod Res 13:265–290. https://doi.org/10.1080/00207547508942996

    Article  Google Scholar 

  88. Mills B, Wakeman DW, Aboukhashaba A, Chisholm AWJ (1980) A new technique for determining the temperature distribution in high speed steel cutting tools using scanning electron microscopy. CIRP Ann - Manuf Technol 29:73–77. https://doi.org/10.1016/S0007-8506(07)61298-0

    Article  Google Scholar 

  89. Dearnley P, Trent EM (1982) Wear mechanisms of coated carbide tools. Met Technol 9:60–75. https://doi.org/10.1179/030716982803285909

    Article  Google Scholar 

  90. Dearnley PA (1983) New technique for determining temperature distribution in cemented carbide cutting tools. Met Technol 10:205–214. https://doi.org/10.1179/030716983803291578

    Article  Google Scholar 

  91. Dearnley PA (2017) Surface engineering for cutting tools. In: Dearnley PA (ed) Introduction to surface engineering. Cambridge University Press, pp 324–386

    Chapter  Google Scholar 

  92. Elmadagli M, Alpas AT (2003) Metallographic analysis of the deformation microstructure of copper subjected to orthogonal cutting. Mater Sci Eng A 355:249–259. https://doi.org/10.1016/S0921-5093(03)00072-8

    Article  Google Scholar 

  93. Reissig L, Völkl R, Mills MJ, Glatzel U (2004) Investigation of near surface structure in order to determine process-temperatures during different machining processes of Ti6Al4V. Scr Mater 50:121–126. https://doi.org/10.1016/j.scriptamat.2003.09.023

    Article  Google Scholar 

  94. Wright PK, McCormick SP, Miller TR (1979) Effect of rake face design on cutting tool temperature distributions. J Eng Ind 102:123–128. https://doi.org/10.1115/1.3183843

    Article  Google Scholar 

  95. Wright PK (1978) Correlation of tempering effects with temperature distribution in steel cutting tools. J Eng Ind 100:131–136. https://doi.org/10.1115/1.3439400

    Article  Google Scholar 

  96. Masoudi S, Gholami MA, Janghorban Iariche M, Vafadar A (2017) Infrared temperature measurement and increasing infrared measurement accuracy in the context of machining process. Adv Prod Eng Manag 12:353–362. https://doi.org/10.14743/apem2017.4.263

  97. Han J, Cao K, Xiao L et al (2020) In situ measurement of cutting edge temperature in turning using a near-infrared fiber-optic two-color pyrometer. Meas J Int Meas Confed 156:107595. https://doi.org/10.1016/j.measurement.2020.107595

    Article  Google Scholar 

  98. Schwerd F (1933) Über die Bestimmung des Temperaturfeldes beim Spanablauf (Determination of the temperature distribution during cutting). Zeitschrift des VDI 9:211–216

    Google Scholar 

  99. Kraemer G (1936) Beitrag zur erkenntnis der beim drehen auftretenden temperaturen und deren messung mit einem gesamtstrahlungsempfanger. hannover

  100. Lenz E (1960) Ein Beitrag zur Messung der schnittemperatur beim Drehen mit keramischen Schneidstoffen. Maschinenmarkt 28:20

    Google Scholar 

  101. Ueda T, Hosokawa A, Yamamoto A (1986) Measurement of grinding temperature using infrared radiation pyrometer with optical fiber. J Eng Ind 108:247–251. https://doi.org/10.1115/1.3187074

    Article  Google Scholar 

  102. Ueda T, Yamada K, Sugita T (1992) Measurement of grinding temperature of ceramics using infrared radiation pyrometer with optical fiber. J Eng Ind 114:317–322. https://doi.org/10.1115/1.2899798

    Article  Google Scholar 

  103. Ueda T, Tanaka H, Torii A, Matsuo T (1993) Measurement of grinding temperature of active grains using infrared radiation pyrometer with optical fiber. Ann CIRP 42:405–408. https://doi.org/10.1016/S0007-8506(07)62472-X

    Article  Google Scholar 

  104. Ueda T, Hosokawa A, Oda K, Yamada K (2001) Temperature on flank face of cutting tool in high speed milling. CIRP Ann - Manuf Technol 50:37–40. https://doi.org/10.1016/S0007-8506(07)62065-4

    Article  Google Scholar 

  105. Al Huda M, Yamada K, Hosokawa A, Ueda T (2002) Investigation of temperature at tool-chip interface in turning using two-color pyrometer. J Manuf Sci Eng 124:200–207. https://doi.org/10.1115/1.1455641

    Article  Google Scholar 

  106. Zhao J, Liu Z, Wang B et al (2018) Cutting temperature measurement using an improved two-color infrared thermometer in turning Inconel 718 with whisker-reinforced ceramic tools. Ceram Int 44:19002–19007. https://doi.org/10.1016/j.ceramint.2018.07.142

    Article  Google Scholar 

  107. Díaz-Álvarez J, Tapetado A, Vázquez C, Miguélez H (2017) Temperature measurement and numerical prediction in machining inconel 718. Sensors 17:1531. https://doi.org/10.3390/s17071531

    Article  Google Scholar 

  108. Saelzer J, Berger S, Iovkov I et al (2020) In-situ measurement of rake face temperatures in orthogonal cutting. CIRP Ann - Manuf Technol 69:61–64. https://doi.org/10.1016/j.cirp.2020.04.021

    Article  Google Scholar 

  109. Baumgart C, Heizer V, Wegener K (2018) In-process workpiece based temperature measurement in cylindrical grinding. Procedia CIRP 77:42–45. https://doi.org/10.1016/j.procir.2018.08.206

    Article  Google Scholar 

  110. Urgoiti L, Barrenetxea D, Sánchez JA et al (2018) On the influence of infra-red sensor in the accurate estimation of grinding temperatures. Sensors 18:4134. https://doi.org/10.3390/s18124134

    Article  Google Scholar 

  111. Kiprawi MA, Yassin A, A. Kamaruddin AMN et al (2019) Development of a cutting edge temperature measurement of end mill tool by using infrared radiation technique. J Mech Eng Sci 13:4661–4678. https://doi.org/10.15282/jmes.13.1.2019.22.0392

  112. Zitoune R, Cadorin N, Collombet F, Šíma M (2017) Temperature and wear analysis in function of the cutting tool coating when drilling of composite structure: In situ measurement by optical fiber. Wear 376–377:1849–1858. https://doi.org/10.1016/j.wear.2016.12.015

    Article  Google Scholar 

  113. Boothroyd G (1961) Photographic technique for the determination of metal cutting temperatures. Br J Appl Phys 12:238–242. https://doi.org/10.1088/0508-3443/12/5/307

    Article  Google Scholar 

  114. Boothroyd G (1963) Temperatures in orthogonal metal cutting. Proc Inst Mech Eng 177:789–810. https://doi.org/10.1243/pime_proc_1963_177_058_02

    Article  Google Scholar 

  115. Thakare A, Nordgren A (2015) Experimental study and modeling of steady state temperature distributions in coated cemented carbide tools in turning. Procedia CIRP 31:234–239. https://doi.org/10.1016/j.procir.2015.03.024

    Article  Google Scholar 

  116. Soler D, Aristimuño PX, Saez-de-Buruaga M et al (2018) New calibration method to measure rake face temperature of the tool during dry orthogonal cutting using thermography. Appl Therm Eng 137:74–82. https://doi.org/10.1016/j.applthermaleng.2018.03.056

    Article  Google Scholar 

  117. Heigel JC, Whitenton E, Lane B et al (2017) Infrared measurement of the temperature at the tool–chip interface while machining Ti–6Al–4V. J Mater Process Technol 243:123–130. https://doi.org/10.1016/j.jmatprotec.2016.11.026

    Article  Google Scholar 

  118. Kryzhanivskyy V, Saoubi RM, Ståhl JE, Bushlya V (2019) Tool–chip thermal conductance coefficient and heat flux in machining: theory, model and experiment. Int J Mach Tools Manuf 147:103468. https://doi.org/10.1016/j.ijmachtools.2019.103468

    Article  Google Scholar 

  119. Molenda J (2020) The experimental investigation of using thermography inspection for dry turning process diagnosis. WSEAS Trans Syst Control 15:431–438. https://doi.org/10.37394/23203.2020.15.43

  120. Hao G, Liu Z, Liang X, Zhao J (2019) Influences of TiAlN coating on cutting temperature during orthogonal machining H13 hardened steel. Coatings 9:355. https://doi.org/10.3390/coatings9060359

    Article  Google Scholar 

  121. Ramirez-Nunez JA, Trejo-Hernandez M, Romero-Troncoso RJ et al (2018) Smart-sensor for tool-breakage detection in milling process under dry and wet conditions based on infrared thermography. Int J Adv Manuf Technol 97:1753–1765. https://doi.org/10.1007/s00170-018-2060-4

    Article  Google Scholar 

  122. de Moreira MO, Abrão AM, Ferreira RAM, Porto MP (2021) Temperature monitoring of milling processes using a directional-spectral thermal radiation heat transfer formulation and thermography. Int J Heat Mass Transf 171:121051. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121051

    Article  Google Scholar 

  123. Hamzawy N, Khedr M, Mahmoud TS et al (2020) Investigation of temperature variation during friction drilling of 6082 and 7075 Al-alloys. In: Tomsett A (ed) The minerals, metals and materials series. Springer, pp 471–477

  124. Saez-de-Buruaga M, Soler D, Aristimuño PX et al (2018) Determining tool/chip temperatures from thermography measurements in metal cutting. Appl Therm Eng 145:305–314. https://doi.org/10.1016/j.applthermaleng.2018.09.051

    Article  Google Scholar 

  125. Outeiro JC, Dias AM, Lebrun JL (2004) Experimental assessment of temperature distribution in three-dimensional cutting process. Mach Sci Technol 8:357–376. https://doi.org/10.1081/lmst-200038984

    Article  Google Scholar 

  126. Kuczmaszewski J, Zagórski I, Zgórniak P (2016) Thermographic study of chip temperature in high-speed dry milling magnesium alloys. Manag Prod Eng Rev 7:86–92. https://doi.org/10.1515/mper-2016-0020

    Article  Google Scholar 

  127. Conradie PJT, Oosthuizen GA, Treurnicht NF, Al Shaalane A (2011) Overview of work piece temperature measurement techniques for machining of Ti6Al4V. South African J Ind Eng 23:116–130. https://doi.org/10.7166/23-2-335

    Article  Google Scholar 

  128. Da Silva MB, Wallbank J (1999) Cutting temperature: prediction and measurement methods-a review. J Mater Process Technol 88:195–202. https://doi.org/10.1016/S0924-0136(98)00395-1

    Article  Google Scholar 

  129. Tay AAO (1993) A review of methods of calculating machining temperature. J Mater Process Technol 36:225–257. https://doi.org/10.1016/0924-0136(93)90033-3

    Article  Google Scholar 

  130. Ning J, Liang SY (2019) Predictive modeling of machining temperatures with force-temperature correlation using cutting mechanics and constitutive relation. Materials (Basel) 12:284. https://doi.org/10.3390/ma12020284

    Article  Google Scholar 

  131. Tay AO, Stevenson MG, de Vahl DG (1974) Using the finite element method to determine temperature distributions in orthogonal machining. Proc Inst Mech Eng 188:627–638. https://doi.org/10.1243/pime_proc_1974_188_074_02

    Article  Google Scholar 

  132. Ceretti E, Filice L, Umbrello D, Micari F (2007) ALE simulation of orthogonal cutting: a new approach to model heat transfer phenomena at the tool-chip interface. CIRP Ann - Manuf Technol 56:69–72. https://doi.org/10.1016/j.cirp.2007.05.019

    Article  Google Scholar 

  133. Jin D, Jingjie Z, Liguo W (2018) Heat partition and rake face temperature in the machining of H13 steel with coated cutting tools. Int J Adv Manuf Technol 94:3691–3702. https://doi.org/10.1007/s00170-017-1122-3

    Article  Google Scholar 

  134. Miao X, Zhang X, Liu X et al (2020) Numerical analysis of performance of different micro-grooved tools for cutting titanium alloy Ti-6Al-4V. Int J Adv Manuf Technol 111:1037–1054. https://doi.org/10.1007/s00170-020-06134-8

    Article  Google Scholar 

  135. Nemetz AW, Daves W, Klünsner T et al (2018) FE temperature- and residual stress prediction in milling inserts and correlation with experimentally observed damage mechanisms. J Mater Process Technol 256:98–108. https://doi.org/10.1016/j.jmatprotec.2018.01.039

    Article  Google Scholar 

  136. Yang K, Liang YC, Zheng KN et al (2011) Tool edge radius effect on cutting temperature in micro-end-milling process. Int J Adv Manuf Technol 52:905–912. https://doi.org/10.1007/s00170-010-2795-z

    Article  Google Scholar 

  137. Kumar A, Bhardwaj R, Joshi SS (2020) Thermal modeling of drilling process in titanium alloy (Ti-6Al-4V). Mach Sci Technol 24:341–365. https://doi.org/10.1080/10910344.2019.1698607

    Article  Google Scholar 

  138. Zhu C, Gu P, Wu Y, Tao Z (2020) Grinding temperature prediction model of high-volume fraction SiCp/Al composite. Int J Adv Manuf Technol 111:1201–1220. https://doi.org/10.1007/s00170-020-06098-9

    Article  Google Scholar 

  139. Rapier AC (1954) A theoretical investigation of the temperature distribution in the metal cutting process. Br J Appl Phys 5:400–405. https://doi.org/10.1088/0508-3443/5/11/306

    Article  Google Scholar 

  140. Smith AJR, Armarego EJA (1981) Temperature prediction in orthogonal cutting with a finite difference approach. CIRP Ann - Manuf Technol 30:9–13. https://doi.org/10.1016/S0007-8506(07)60886-5

    Article  Google Scholar 

  141. Lazoglu I, Altintas Y (2002) Prediction of tool and chip temperature in continuous and interrupted machining. Int J Mach Tools Manuf 42:1011–1022. https://doi.org/10.1016/S0890-6955(02)00039-1

    Article  Google Scholar 

  142. Ulutan D, Lazoglu I, Dinc C (2009) Three-dimensional temperature predictions in machining processes using finite difference method. J Mater Process Technol 209:1111–1121. https://doi.org/10.1016/j.jmatprotec.2008.03.020

    Article  Google Scholar 

  143. Islam C, Altintas Y (2019) A two-dimensional transient thermal model for coated cutting tools. J Manuf Sci Eng 141:071003. https://doi.org/10.1115/1.4043578

    Article  Google Scholar 

  144. Nowakowski L, Skrzyniarz M, Blasiak S, Bartoszuk M (2020) Influence of the cutting strategy on the temperature and surface flatness of the workpiece in face milling. Materials (Basel) 13:4542. https://doi.org/10.3390/ma13204542

    Article  Google Scholar 

  145. Chen H, Zhao J, Dai Y et al (2020) Simulation of 3D grinding temperature field by using an improved finite difference method. Int J Adv Manuf Technol 108:3871–3884. https://doi.org/10.1007/s00170-020-05513-5

    Article  Google Scholar 

  146. Chan CL, Chandra A (1991) A boundary element method analysis of the thermal aspects of metal cutting processes. J Eng Ind 113:311–319. https://doi.org/10.1115/1.2899702

    Article  Google Scholar 

  147. Tanaka Y, Honma T, Kaji I (1986) On mixed boundary element solutions of convection-diffusion problems in three dimensions. Appl Math Model 10:170–175. https://doi.org/10.1016/0307-904X(86)90042-9

  148. Du F, Lovell MR, Wu TW (2001) Boundary element method analysis of temperature fields in coated cutting tools. Int J Solids Struct 38:4557–4570. https://doi.org/10.1016/S0020-7683(00)00291-2

    Article  MATH  Google Scholar 

  149. Zhang Y, Gu Y, Chen JT (2010) Boundary element analysis of the thermal behaviour in thin-coated cutting tools. Eng Anal Bound Elem 34:775–784. https://doi.org/10.1016/j.enganabound.2010.03.014

    Article  MathSciNet  MATH  Google Scholar 

  150. Khavin G, Gasanov M, Permyakov A, Nevludova V (2020) A numerical-analytical model of the temperature field distribution during orthogonal cutting of composites. In Ivanov V, Trojanowska J, Pavlenko I et al (eds) Advances in design, simulation and manufacturing III. Springer, pp 371–379

    Chapter  Google Scholar 

  151. Loewen EG, Shaw MC (1954) On the analysis of cutting tool temperatures. Trans ASME 76:217–231

    Google Scholar 

  152. Ning J, Liang SY (2019) A comparative study of analytical thermal models to predict the orthogonal cutting temperature of AISI 1045 steel. Int J Adv Manuf Technol 102:3109–3119. https://doi.org/10.1007/s00170-019-03415-9

    Article  Google Scholar 

  153. Oxley PLB, SHaw MC, (1990) Mechanics of machining: an analytical approach to assessing machinability. J Appl Mech 57:253. https://doi.org/10.1115/1.2888318

    Article  Google Scholar 

  154. Komanduri R, Hou ZB (2001) Thermal modeling of the metal cutting process - Part III: temperature rise distribution due to the combined effects of shear plane heat source and the tool-chip interface frictional heat source. Int J Mech Sci 43:89–107. https://doi.org/10.1016/S0020-7403(99)00105-8

    Article  MATH  Google Scholar 

  155. Ning J, Liang S (2018) Prediction of temperature distribution in orthogonal machining based on the mechanics of the cutting process using a constitutive model. J Manuf Mater Process 2:37. https://doi.org/10.3390/jmmp2020037

    Article  Google Scholar 

  156. Zhang J, Liu Z, Du J (2017) Prediction of cutting temperature distributions on rake face of coated cutting tools. Int J Adv Manuf Technol 91:49–57. https://doi.org/10.1007/s00170-016-9719-5

    Article  Google Scholar 

  157. Wang Y, Liu J, Liu K et al (2020) Modeling of temperature distribution in turning of Ti-6Al-4V with liquid nitrogen cooling. Int J Adv Manuf Technol 107:451–462. https://doi.org/10.1007/s00170-020-05093-4

    Article  Google Scholar 

  158. Oliveira GC, Ribeiro SS, Guimarães G (2021) An inverse procedure to estimate the heat flux at coated tool-chip interface: a 3D transient thermal model. Int J Adv Manuf Technol 112:3327–3341. https://doi.org/10.1007/s00170-020-06498-x

    Article  Google Scholar 

  159. Zhou R (2020) Analytical model of workpiece surface temperature prediction in 4-axis milling process. Int J Adv Manuf Technol 111:2155–2162. https://doi.org/10.1007/s00170-020-06255-0

    Article  Google Scholar 

  160. Lu X, Wang H, Jia Z et al (2019) Coupled thermal and mechanical analyses of micro-milling Inconel 718. Proc Inst Mech Eng Part B J Eng Manuf 233:1112–1126. https://doi.org/10.1177/0954405418774586

    Article  Google Scholar 

  161. Dureja JS, Gupta VK, Sharma VS et al (2016) A review of empirical modeling techniques to optimize machining parameters for hard turning applications. Proc Inst Mech Eng Part B J Eng Manuf 230:389–404. https://doi.org/10.1177/0954405414558731

    Article  Google Scholar 

  162. Ghosh PS, Chakraborty S, Biswas AR, Mandal NK (2018) Empirical modelling and optimization of temperature and machine vibration in CNC hard turning. Mater Today Proc 5:12394–12402. https://doi.org/10.1016/j.matpr.2018.02.218

    Article  Google Scholar 

  163. Junge T, Nestler A, Schubert A (2021) In-process monitoring and empirical modeling of the tool wear in turning of aluminum alloys using thermoelectric signals. Procedia CIRP 102:308–313. https://doi.org/10.1016/j.procir.2021.09.053

    Article  Google Scholar 

  164. Kuntoğlu M, Sağlam H (2021) ANOVA and fuzzy rule based evaluation and estimation of flank wear, temperature and acoustic emission in turning. CIRP J Manuf Sci Technol 35:589–603. https://doi.org/10.1016/j.cirpj.2021.07.011

    Article  Google Scholar 

  165. Ji J, Yang Q, Chen P et al (2021) An improved mathematical model of cutting temperature in end milling Al7050 based on the influence of tool geometry parameters and milling parameters. Math Probl Eng. https://doi.org/10.1155/2021/5705091

    Article  Google Scholar 

  166. Santhanakrishnan M, Sivasakthivel PS, Sudhakaran R (2017) Modeling of geometrical and machining parameters on temperature rise while machining Al 6351 using response surface methodology and genetic algorithm. J Brazilian Soc Mech Sci Eng 39:487–496. https://doi.org/10.1007/s40430-015-0378-5

    Article  Google Scholar 

  167. Deja M, Lichtschlag L, Uhlmann E (2021) Thermal and technological aspects of double face grinding of C45 carbon steel. J Manuf Process 64:1036–1046. https://doi.org/10.1016/j.jmapro.2021.02.023

    Article  Google Scholar 

  168. Hopkins C, Hosseini A (2019) A review of developments in the fields of the design of smart cutting tools, wear monitoring, and sensor innovation. IFAC-PapersOnLine 52:352–357. https://doi.org/10.1016/j.ifacol.2019.10.056

    Article  Google Scholar 

  169. Pratas S, Silva EL, Neto MA et al (2021) Boron doped diamond for real-time wireless cutting temperature monitoring of diamond coated carbide tools. Materials (Basel) 14:7334. https://doi.org/10.3390/ma14237334

    Article  Google Scholar 

  170. Rizal M, Ghani JA, Nuawi MZ, Haron CHC (2018) An embedded multi-sensor system on the rotating dynamometer for real-time condition monitoring in milling. Int J Adv Manuf Technol 95:811–823. https://doi.org/10.1007/s00170-017-1251-8

    Article  Google Scholar 

  171. Shu S, Cheng K, Ding H, Chen S (2013) An innovative method to measure the cutting temperature in process by using an internally cooled smart cutting tool. J Manuf Sci Eng 135:061018. https://doi.org/10.1115/1.4025742

    Article  Google Scholar 

  172. Sun X, Bateman R, Cheng K, Ghani SC (2012) Design and analysis of an internally cooled smart cutting tool for dry cutting. Proc Inst Mech Eng Part B J Eng Manuf 226:585–591. https://doi.org/10.1177/0954405411424670

    Article  Google Scholar 

  173. Öztürk E, Yıldızlı K, Sağlam F (2021) Investigation on an innovative internally cooled smart cutting tool with the built-in cooling-control system. Arab J Sci Eng 46:2397–2411. https://doi.org/10.1007/s13369-020-05002-7

    Article  Google Scholar 

  174. Guimarães B, Fernandes CM, Figueiredo D et al (2020) A novel approach to reduce in-service temperature in WC-Co cutting tools. Ceram Int 46:3002–3008. https://doi.org/10.1016/j.ceramint.2019.09.299

    Article  Google Scholar 

  175. Thames L, Schaefer D (2016) Software-defined cloud manufacturing for Industry 4.0. Procedia CIRP 52:12–17. https://doi.org/10.1016/j.procir.2016.07.041

    Article  Google Scholar 

  176. Kim H, Jung WK, Choi IG, Ahn SH (2019) A low-cost vision-based monitoring of computer numerical control (CNC) machine tools for small and medium-sized enterprises (SMES). Sensors 19:4506. https://doi.org/10.3390/s19204506

    Article  Google Scholar 

  177. Kalsoom T, Ramzan N, Ahmed S, Ur-Rehman M (2020) Advances in sensor technologies in the era of smart factory and Industry 4.0. Sensors 20:6783. https://doi.org/10.3390/s20236783

  178. Peraković D, Periša M, Zorić P, Cvitić I (2020) Development and implementation possibilities of 5G in Industry 4.0. In: Ivanov V, Trojanowska J, Pavlenko I et al (eds) Advances in design, simulation and manufacturing III. Springer, pp 166–175

  179. Di Nardo M, Yu H (2021) Special issue Industry 5.0: the prelude to the sixth industrial revolution. Appl Syst Innov 4:45. https://doi.org/10.3390/asi4030045

  180. Breque M, De Nul L, Petridis A (2021) Industry 5.0: towards a sustainable, human-centric and resilient European industry

  181. Özdemir V, Hekim N (2018) Birth of Industry 5.0: making sense of big data with artificial intelligence, the internet of things and next-generation technology policy. Omi A J Integr Biol 22:65–76. https://doi.org/10.1089/omi.2017.0194

    Article  Google Scholar 

  182. Nahavandi S (2019) Industry 5.0-a human-centric solution. Sustainability 11:4371. https://doi.org/10.3390/su11164371

  183. Duggal AS, Malik PK, Gehlot A et al (2021) A sequential roadmap to Industry 6.0: exploring future manufacturing trends. IET Commun 1–11. https://doi.org/10.1049/cmu2.12284

  184. Boothroyd G, Knight WA (2005) Fundamentals of metal machining and machine tools, third Edit. CRC Taylor & Francis

  185. Liu C, Vengayil H, Zhong RY, Xu X (2018) A systematic development method for cyber-physical machine tools. J Manuf Syst 48:13–24. https://doi.org/10.1016/j.jmsy.2018.02.001

    Article  Google Scholar 

  186. Kagermann H, Wahlster W (2013) Recommendations for implementing the strategic initiative INDUSTRIE 4.0

  187. Xu X (2017) Machine tool 4.0 for the new era of manufacturing. Int J Adv Manuf Technol 92:1893–1900. https://doi.org/10.1007/s00170-017-0300-7

    Article  Google Scholar 

  188. Liu C, Xu X (2017) Cyber-physical machine tool-the era of machine tool 4.0. Procedia CIRP 63:70–75. https://doi.org/10.1016/j.procir.2017.03.078

    Article  Google Scholar 

  189. Chuo YS, Lee JW, Mun CH et al (2022) Artificial intelligence enabled smart machining and machine tools. J Mech Sci Technol 36:1–23. https://doi.org/10.1007/s12206-021-1201-0

    Article  Google Scholar 

  190. Möhring HC, Werkle K, Maier W (2020) Process monitoring with a cyber-physical cutting tool. Procedia CIRP 93:1466–1471. https://doi.org/10.1016/j.procir.2020.03.034

    Article  Google Scholar 

  191. Mativenga PT, Aramcharoen A, Huo D (2013) Micro tooling design and manufacturing. In: Cheng K, Huo D (eds) Micro-cutting: fundamentals and applications, first Edi. John Wiley & Sons Ltd, pp 45–61

  192. Serin G, Sener B, Ozbayoglu AM, Unver HO (2020) Review of tool condition monitoring in machining and opportunities for deep learning. Int J Adv Manuf Technol 109:953–974. https://doi.org/10.1007/s00170-020-05449-w

    Article  Google Scholar 

  193. Colantonio L, Equeter L, Dehombreux P, Ducobu F (2021) A systematic literature review of cutting tool wear monitoring in turning by using artificial intelligence techniques. Machines 9:351. https://doi.org/10.3390/machines9120351

    Article  Google Scholar 

  194. Nasir V, Sassani F (2021) A review on deep learning in machining and tool monitoring: methods, opportunities, and challenges. Int J Adv Manuf Technol 115:2683–2709. https://doi.org/10.1007/s00170-021-07325-7

    Article  Google Scholar 

  195. Balázs BZ, Geier N, Takács M, Davim JP (2021) A review on micro-milling: recent advances and future trends. Int J Adv Manuf Technol 112:655–684. https://doi.org/10.1007/s00170-020-06445-w

    Article  Google Scholar 

  196. Monostori L, Kádár B, Bauernhansl T et al (2016) Cyber-physical systems in manufacturing. CIRP Ann - Manuf Technol 65:621–641. https://doi.org/10.1016/j.cirp.2016.06.005

    Article  Google Scholar 

  197. Lu Y (2017) Industry 4.0: A survey on technologies, applications and open research issues. J Ind Inf Integr 6:1–10. https://doi.org/10.1016/j.jii.2017.04.005

    Article  Google Scholar 

  198. Jiang W (2014) Bio-inspired self-sharpening cutting tool surface for finish hard turning of steel. CIRP Ann - Manuf Technol 63:517–520. https://doi.org/10.1016/j.cirp.2014.03.047

    Article  Google Scholar 

Download references

Funding

This work was supported by FCT (Fundação para a Ciência e a Tecnologia) through the grant 2020.07155.BD and by the project POCI-01–0145-FEDER-030353 (SMARTCUT). Additionally, this work was supported by FCT national funds, under the national support to R&D units grant, through the reference projects UIDB/04436/2020 and UIDP/04436/2020. Finally, this work was also developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020, UIDP/50011/2020, and LA/P/0006/2020, financed by national funds through the FCT/MEC (PIDDAC).

Author information

Authors and Affiliations

Authors

Contributions

B. Guimarães: methodology, investigation, writing–original draft, visualization. C. M. Fernandes: conceptualization, writing–review and editing, supervision. D. Figueiredo: writing–review and editing. F. S. Silva: writing–review and editing, supervision. G. Miranda: conceptualization, writing–review and editing, supervision.

Corresponding author

Correspondence to Bruno Miguel Pereira Guimarães.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

The authors declare that all authors have read and approved to submit this manuscript to IJAMT.

Consent for publication

The authors declare that all authors agree to sign the transfer of copyright for the publisher to publish this article upon on acceptance.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira Guimarães, B.M., da Silva Fernandes, C.M., Amaral de Figueiredo, D. et al. Cutting temperature measurement and prediction in machining processes: comprehensive review and future perspectives. Int J Adv Manuf Technol 120, 2849–2878 (2022). https://doi.org/10.1007/s00170-022-08957-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-08957-z

Keywords

Navigation