Skip to main content
Log in

Material removal behavior of nanoscale shear cutting and extrusion cutting of monocrystalline γ-TiAl alloy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The theoretical research shows that brittle materials can realize ductile cutting at the nanometer scale and avoid cracks on the machined surface. However, the decrease of machining scale changes the load state and material behavior, which makes the classical shear model fail. Therefore, based on modern physical research methods such as molecular dynamics, the nano-cutting process of the monocrystalline γ-TiAl alloy is studied in this paper. The essential difference between nano-cutting and macro-cutting is analyzed, and the material removal mechanism at nanoscale is explained, which provides theoretical support for the plastic domain machining of brittle materials. The results show that the ductile cutting process of the brittle γ-TiAl alloy at the nanometer scale is implemented by the phase transformation under the high hydrostatic pressure near the tool. The phase transformation during the cutting process can be divided into high stress-induced amorphization (HSIA) and elastic stress-induced dislocation (ESID). Compared with shear cutting, the material removal under extrusion cutting is achieved by continuous plastic deformation in the HSIA region above the stagnation zone. The ESID process leads to the formation of subsurface defects and does not contribute to the formation of amorphous chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Bewlay B, Nag S, Suzuki A et al (2016) TiAl alloys in commercial aircraft engines. Mater High Temp 33:549–559. https://doi.org/10.1080/09603409.2016.1183068

    Article  Google Scholar 

  2. Xu RR, Li H, Li MQ (2020) Dynamic recrystallization mechanism of γ and α phases during the isothermal compression of γ-TiAl alloy with duplex structure. J Alloy Compd 844:156089. https://doi.org/10.1016/j.jallcom.2020.156089

    Article  Google Scholar 

  3. Yao CF, Lin JN, Wu DX et al (2018) Surface integrity and fatigue behavior when turning γ-TiAl alloy with optimized PVD-coated carbide inserts. Chinese J Aeronaut 31:826–836. https://doi.org/10.1016/j.cja.2017.06.002

    Article  Google Scholar 

  4. Inamura T, Takezawa N, Kumaki Y (1993) Mechanics and energy dissipation in nanoscale cutting. Cirp Ann-Manuf Techn 42:79–82. https://doi.org/10.1016/S0007-8506(07)62396-8

    Article  Google Scholar 

  5. Yang S, Cheng B, McGeough JA et al (2021) Multi-scale numerical analysis and experimental verification for nano-cutting. J Manuf Process 71:260–268. https://doi.org/10.1016/j.jmapro.2021.09.030

    Article  Google Scholar 

  6. Chen C, Lai M, Fang F (2021) Subsurface deformation mechanism in nano-cutting of gallium arsenide using molecular dynamics simulation. Nanoscale Res Lett 16:1–10. https://doi.org/10.1016/j.apsusc.2020.148322

    Article  Google Scholar 

  7. Merchant ME (1945) Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J Appl Phys 16:267–275. https://doi.org/10.1063/1.1707586

    Article  Google Scholar 

  8. Merchant ME (1945) Mechanics of the metal cutting process. II. Plasticity conditions in orthogonal cutting. J Appl Phys 16:318–324. https://doi.org/10.1063/1.1707596

    Article  Google Scholar 

  9. Ernst H, Merchant M (1941) Surface treatment of metals. American Society of Metals, New York

  10. Manso CS, Thom S, Uhlmann E et al (2020) Investigation of micromilled tool steel H13 using tungsten carbide micro-end mills. Int J Adv Manuf Technol 107:1179–1189. https://doi.org/10.1007/s00170-020-05075-6

  11. Manso CS, Thom S, Uhlmann E et al (2019) Tool wear modeling using micro tool diameter reduction for micro-end-milling of tool steel H13. Int J Adv Manuf Technol 105:2531–2542. https://doi.org/10.1007/s00170-019-04575-411

    Article  Google Scholar 

  12. Bu YQ, Wang P, Nie AM et al (2021) Room-temperature plasticity in diamond. Sci China Technol Sc 64:32–36. https://doi.org/10.1007/s11431-020-1590-8

    Article  Google Scholar 

  13. Huang RR, Zhang Q, Zhang X et al (2021) Dynamic recrystallization-induced temperature insensitivity of yield stress in single-crystal Al 1.2 CrFeCoNi micropillars. Sci China Technol Sc64:11–22. https://doi.org/10.1007/s11431-020-1660-8

  14. Ma Y, Zhang S, Xu Y et al (2020) Effects of temperature and grain size on deformation of polycrystalline copper-graphene nanolayered composites. Phys Chem Chem Phys 22:4741–4748. https://doi.org/10.1039/C9CP06830A

    Article  Google Scholar 

  15. Marsden JE, West M (2001) Discrete mechanics and variational integrators. Acta Numer 10:357–514. https://doi.org/10.1017/S096249290100006X

    Article  MathSciNet  MATH  Google Scholar 

  16. Aida H, Doi T, Takeda H et al (2012) Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials. Curr Appl Phys 12:41–46. https://doi.org/10.1016/j.cap.2012.02.016

  17. Goel S, Kovalchenko A, Stukowski A et al (2016) Influence of microstructure on the cutting behaviour of silicon. Acta Mater 105:464–478. https://doi.org/10.1016/j.actamat.2015.11.046

    Article  Google Scholar 

  18. Xie ZC, Chen Y, Wang HY et al (2021) Atomic-level mechanism of spallation microvoid nucleation in medium entropy alloys under shock loading. Sci China Technol Sc 2021:1–11. https://doi.org/10.1007/s11431-021-1814-y

    Article  Google Scholar 

  19. Fang FZ, Wu H, Liu YC (2005) Modelling and experimental investigation on nanometric cutting of monocrystalline silicon. Int J Mach Tool Manu 45:1681–1686. https://doi.org/10.1016/j.ijmachtools.2005.03.010

    Article  Google Scholar 

  20. Rahman MA, Rahman M, Woon KS et al (2021) Episodes of chip formation in micro-to-nanoscale cutting of Inconel 625. Int J Mech Sci 199:106407. https://doi.org/10.1016/j.ijmecsci.2021.106407

    Article  Google Scholar 

  21. Xie W, Fang F (2019) Mechanism of atomic and close-toatomic scale cutting of monocrystalline copper. Appl Surf Sci 503:144239. https://doi.org/10.1016/j.apsusc.2019.144239

    Article  Google Scholar 

  22. Malekian M, Mostofa MG, Park SS et al (2012) Modeling of minimum uncut chip thickness in micro machining of aluminum. J Mater Process Tech 212:553–559. https://doi.org/10.1016/j.jmatprotec.2011.05.022

    Article  Google Scholar 

  23. Lai M, Zhang XD, Fang FZ (2012) Study on critical rake angle in nanometric cutting. Appl Phys A-Mater 108:809–818. https://doi.org/10.1007/s00339-012-6973-8

    Article  Google Scholar 

  24. Liu B, Xu Z, Chen C et al (2019) Effect of tool edge radius on material removal mechanism of single-crystal silicon: numerical and experimental study. Comp Mater Sci 163:127–133. https://doi.org/10.1016/j.commatsci.2019.03.025

    Article  Google Scholar 

  25. Wang J, Zhang X, Fang F et al (2018) A numerical study on the material removal and phase transformation in the nanometric cutting of silicon. Appl Surf Sci 455:608–615. https://doi.org/10.1016/j.apsusc.2018.05.091

    Article  Google Scholar 

  26. Li HY, Qiao HY, Feng RC (2020) Effect of different cutting depth on mechanical properties of single crystal γ-TiAl alloy. Rare Metal Mat Eng 49:1931–1937

    Google Scholar 

  27. Li J, Xie H, Meng W et al (2021) Evolution mechanism of subsurface defect structure in particle micro-cutting iron–carbon alloy process. P I Mech Eng J-J Eng 235:931–944. https://doi.org/10.1177/1350650120928225

    Article  Google Scholar 

  28. Li Y, Shuai M, Zhang J et al (2018) Molecular dynamics investigation of residual stress and surface roughness of cerium under diamond cutting. micromachines-basel 9:386. https://doi.org/10.3390/mi9080386

  29. Sharma A, Ranjan P, Balasubramaniam R (2021) Investigation of effect of uncut chip thickness to edge radius ratio on nanoscale cutting behavior of single crystal copper: MD simulation approach. J Micromanufacturing 4:6–17. https://doi.org/10.1177/2516598420937638

    Article  Google Scholar 

  30. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. https://doi.org/10.1006/jcph.1995.1039

    Article  MATH  Google Scholar 

  31. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model Simul Mater Sc 18:2154–2162. https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  32. Cao H, Rui ZY, Chen WK et al (2019) Crack propagation mechanism of γ-TiAl alloy with pre–existing twin boundary. Sci China Technol Sc 62:1605–1615

    Article  Google Scholar 

  33. Feng RC, Song WY, Li HY et al (2018) Effects of annealing on the residual stress in γ-TiAl alloy by molecular dynamics simulation. Mater 11:1025. https://doi.org/10.3390/ma11061025

    Article  Google Scholar 

  34. Verlet L (1967) Computer “experiment” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Health Phys 22:79–85. https://doi.org/10.1103/PhysRevA.7.1690

    Article  Google Scholar 

  35. Sharma A, Datta D, Balasubramaniam R (2018) Molecular dynamics simulation to investigate the orientation effects on nanoscale cutting of single crystal copper. Comp Mater Sci 153:241–250. https://doi.org/10.1016/j.commatsci.2018.07.002

    Article  Google Scholar 

  36. He G, Rong Y, Xu Z (2000) Self-energy and interaction energy of stacking fault in FCC metals calculated by embedded-atom method. Sci China Ser E 43:146–153. https://doi.org/10.1007/BF02916884

    Article  Google Scholar 

  37. Zhu Y, Zhang YC, Qi SH et al (2016) Titanium nanometric cutting process based on molecular dynamics. Rare Metal Mat Eng 45:897–900. https://doi.org/10.1016/S1875-5372(16)30096-0

    Article  Google Scholar 

  38. Dandekar CR, Shin YC (2011) Molecular dynamics based cohesive zone law for describing Al -SiC interface mechanics. Compos Part A 42:355–363. https://doi.org/10.1016/j.compositesa.2010.12.005

    Article  Google Scholar 

  39. Isono Y, Tanaka T (2008) Three-dimensional molecular dynamics simulation of atomic scale precision processing using a pin tool. Transactions of the Japan Society of Mechanical Engineers 62:2364–2371. https://doi.org/10.1299/jsmea.40.211

    Article  Google Scholar 

  40. Zhu PZ, Qiu C, Fang FZ et al (2014) Molecular dynamics simulations of nanometric cutting mechanisms of amorphous alloy. Appl Surf Sci 317:432–442. https://doi.org/10.1016/j.apsusc.2014.08.031

    Article  Google Scholar 

  41. Yuan Y, Zhao K, Zhao Y et al (2020) Couple stress-based nonlinear buckling analysis of hydrostatic pressurized functionally graded composite conical microshells. Mech Mater 148:103507. https://doi.org/10.1016/j.mechmat.2020.103507

    Article  Google Scholar 

  42. Qian Y, Deng S, Shang F et al (2019) Dependence of tribological behavior of GaN crystal on loading direction: a molecular dynamics study. J Appl Phys 126:075108. https://doi.org/10.1063/1.5093227

    Article  Google Scholar 

  43. Stukowski A (2012) Structure identification methods for atomistic simulations of crystalline materials. Model Simul Mater Sc 20:045021. https://doi.org/10.1088/0965-0393/20/4/045021

    Article  Google Scholar 

  44. Stukowski A, Bulatov VV, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces. Model Simul Mater Sc 20:085007. https://doi.org/10.1088/0965-0393/20/8/085007

    Article  Google Scholar 

  45. Dai H, Chen G, Zhou C et al (2017) A numerical study of ultraprecision machining of monocrystalline silicon with laser nanostructured diamond tools by atomistic simulation. Appl Surf Sci 393:405–416. https://doi.org/10.1016/j.apsusc.2016.10.014

    Article  Google Scholar 

  46. Gobivel K, Vijaysekar KS, Prabhakaran G (2021) Impact of cutting parameters on machining of Ti-6Al-4V alloy: anexperimental and FEM approach. Int J Simul Multidiscip Des Opt 12:2. https://doi.org/10.1051/smdo/2021002

    Article  Google Scholar 

  47. Chavoshi SZ, Goel S, Luo X (2016) Influence of temperature on the anisotropic cutting behaviour of single crystal silicon: a molecular dynamics simulation investigation. J Manuf Process 23:201–210. https://doi.org/10.1016/j.jmapro.2016.06.009

    Article  Google Scholar 

  48. Zhu ZX, Peng B, Feng RC et al (2019) Molecular dynamics simulation of chip formation mechanism in single-crystal nickel nanomachining. Sci China Technol Sc 62:1916–1929. https://doi.org/10.1007/s11431-019-9520-8

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 52065036), Natural Science Foundation of Gansu (Grant No. 20JR5RA448), and the Hongliu First-class Disciplines Development Program of Lanzhou University of Technology. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Ruicheng Feng.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, R., Shao, Z., Yang, S. et al. Material removal behavior of nanoscale shear cutting and extrusion cutting of monocrystalline γ-TiAl alloy. Int J Adv Manuf Technol 119, 6729–6742 (2022). https://doi.org/10.1007/s00170-021-08536-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08536-8

Keywords

Navigation