Skip to main content
Log in

Atomic-scale study of the nano-cutting deformation mechanism of nickel-based single crystal superalloy containing Cr, Co, and γ/γ´

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To study the cutting micromechanics of nickel-based single crystal superalloy containing γ/γ´ two-phase structures and strengthening elements, a molecular dynamics method was used to establish a cutting model for nickel-based single crystal superalloy. The variation of machining force, shear strain, atomic displacement, and surface quality were analyzed in depth, and the effect of strengthening element content in the γ phase on the cutting behavior was investigated by comparing different models. It was found that the dislocation tangle is easily formed in the γ phase of nickel-based single crystal superalloy leading to increased machining forces, in addition, the coherent interface is stronger and can block the development of shear strain zones and the displacement of atoms. It is also found that the elastic recovery of γ phase is lower than that of γ´ phase, resulting in the deepest part of the machined surface always appearing in γ phase. Finally, by studying the influence of the content of strengthening elements on the material, it is found that the strengthening elements Cr and Co in γ phase can promote the generation of dislocation tangle, and also enhance the strength of γ phase and coherent interface and improve the deformation resistance of the workpiece.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. W.S. Xia, X.B. Zhao, L. Yue et al., Microstructural evolution and creep mechanisms in Ni-based single crystal superalloys: a review. J. Alloys Compd. 819, 152954 (2019). https://doi.org/10.1016/j.jallcom.2019.152954

    Article  Google Scholar 

  2. S.Y. Sun, L. Li, K. He et al., Fretting fatigue damage mechanism of nickel-based single crystal superalloys at high temperature. Int. J. Mech. Sci. 186, 105894 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105894

    Article  Google Scholar 

  3. Q.Q. Ding, H.B. Bei, X.B. Zhao et al., Processing, microstructures and mechanical properties of a Ni-based single crystal superalloy. Curr. Comput.-Aided Drug Des. 10, 572 (2020). https://doi.org/10.3390/cryst10070572

    Article  Google Scholar 

  4. X. Yao, Q. Ding, X. Zhao et al., Microstructural rejuvenation in a Ni-based single crystal superalloy. Mater Today Nano. 17, 100152 (2022). https://doi.org/10.1016/j.mtnano.2021.100152

    Article  Google Scholar 

  5. X.G. Wang, J.L. Liu, J.D. Liu et al., Dependence of stacking faults in gamma matrix on low-cycle fatigue behavior of a Ni-based single-crystal superalloy at elevated temperature. Scr. Mater. 152, 94–97 (2018). https://doi.org/10.1016/j.scriptamat.2018.04.020

    Article  ADS  Google Scholar 

  6. F. Wang, D. Ma, A. Bührig-Polacze, Microsegregation behavior of alloying elements in single-crystal nickel-based superalloys with emphasis on dendritic structure. Mater. Charact. 127, 311–316 (2017). https://doi.org/10.1016/j.matchar.2017.02.030

    Article  Google Scholar 

  7. Q.Q. Ding, H.B. Bei, X. Yao et al., Temperature effects on deformation substructures and mechanisms of a Ni-based single crystal superalloy. Appl. Mater. Today. 23, 101061 (2021). https://doi.org/10.1016/j.apmt.2021.101061

    Article  Google Scholar 

  8. G.L. Wang, J.L. Liu, J.D. Liu et al., High temperature stress rupture anisotropy of a Ni-based single crystal superalloy. J. Mater. Sci. Technol. 32, 1003–1007 (2016). https://doi.org/10.1016/j.jmst.2016.08.018

    Article  Google Scholar 

  9. L. Cao, L. Yao, Y.Z. Zhou et al., Formation of the surface eutectic of a Ni-based single crystal superalloy. J. Mater. Sci. Technol. 33, 347–351 (2017). https://doi.org/10.1016/j.jmst.2016.08.014

    Article  Google Scholar 

  10. Q.H. Pan, X.B. Zhao, Y. Cheng et al., Effects of co on microstructure evolution of a 4th generation nickel-based single crystal superalloys. Intermetallics 153, 107798 (2023). https://doi.org/10.1016/j.intermet.2022.107798

    Article  Google Scholar 

  11. O. Horst, D. Adler, P. Git et al., Exploring the fundamentals of Ni-based superalloy single crystal (sx) alloy design: chemical composition vs. Microstructure. Mater Des. 195, 108976 (2020). https://doi.org/10.1016/j.matdes.2020.108976

    Article  Google Scholar 

  12. W.S. Xia, X.B. Zhao, L. Yue et al., A review of composition evolution in Ni-based single crystal superalloys. J. Mater. Sci. Technol. 44, 76–95 (2020). https://doi.org/10.1016/j.jmst.2020.01.026

    Article  Google Scholar 

  13. R. Darolia, Development of strong, oxidation and corrosion resistant nickel-based superalloys: critical review of challenges, progress and prospects. Int. Mater. Rev. 64, 355–380 (2018). https://doi.org/10.1080/09506608.2018.1516713

    Article  Google Scholar 

  14. H.B. Long, S.C. Mao, Y.N. Liu et al., Microstructural and compositional design of Ni-based single crystalline superalloys—a review. J. Alloys Compd. 743, 203–220 (2018). https://doi.org/10.1016/j.jallcom.2018.01.224

    Article  Google Scholar 

  15. Q. Gao, X.Y. Chen, Experimental research on micro-milling force of a single-crystal nickel-based superalloy. Int. J. Adv. Manuf. Tech. 102, 595–604 (2019). https://doi.org/10.1007/s00170-018-03211-x

    Article  Google Scholar 

  16. M. Cai, T. Zhu, X.J. Gao et al., Study on machining performance in grinding of Ni-base single crystal superalloy dd5. Int. J. Adv. Manuf. Tech. 120, 7657–7671 (2022). https://doi.org/10.1007/s00170-022-09256-3

    Article  Google Scholar 

  17. B. Wang, Z.Q. Liu, Y.K. Cai et al., Advancements in material removal mechanism and surface integrity of high speed metal cutting: a review. Int. J. Mach. Tool Manuf. 166, 103744 (2021). https://doi.org/10.1016/j.ijmachtools.2021.103744

    Article  Google Scholar 

  18. M.A. la, D. Axinte, Z. Liao et al., Towards understanding the thermal history of microstructural surface deformation when cutting a next generation powder metallurgy nickel-base superalloy. Int. J. Mach. Tool Manuf. 168, 103765 (2021). https://doi.org/10.1016/j.ijmachtools.2021.103765

    Article  Google Scholar 

  19. Q. Miao, W.F. Ding, J.H. Xu et al., Creep feed grinding induced gradient microstructures in the superficial layer of turbine blade root of single crystal nickel-based superalloy. Int. J. Extreme Manuf. 3, 045102 (2021). https://doi.org/10.1088/2631-7990/ac1e05

    Article  Google Scholar 

  20. J. Qiu, T. Yang, Z.Y. Zhang et al., On the anisotropic milling machinability of dd407 single crystal nickel-based superalloy. Materials. 15, 2723 (2022). https://doi.org/10.3390/ma15082723

    Article  ADS  Google Scholar 

  21. J.G. Zhang, H.X. Yuan, L.Q. Feng et al., Enhanced machinability of Ni-based single crystal superalloy by vibration-assisted diamond cutting. Precis. Eng. 79, 300–309 (2023). https://doi.org/10.1016/j.precisioneng.2022.11.012

    Article  Google Scholar 

  22. Q. Gao, P. Jin, M. Cai, Research on sub-surface recrystallization of single crystal nickel-based superalloy in micro-milling. J Mech Sci Technol. 33, 3467–3472 (2019). https://doi.org/10.1007/s12206-019-0641-2

    Article  Google Scholar 

  23. M. Cai, Y.D. Gong, Y. Sun et al., Experimental study on grinding surface properties of nickel-based single crystal superalloy dd5. Int. J. Adv. Manuf. Tech. 101, 71–85 (2018). https://doi.org/10.1007/s00170-018-2839-3

    Article  Google Scholar 

  24. Y.C. Xu, Y.D. Gong, Z.X. Wang et al., Experimental study of Ni-based single-crystal superalloy: microstructure evolution and work hardening of ground subsurface. Arch. Civ. Mech. Eng. 21, 1–11 (2021). https://doi.org/10.1007/s43452-021-00203-9

    Article  Google Scholar 

  25. Y.M. Zhang, X.Q. Yang, X.Y. Wang et al., A micropolar peridynamic model with non-uniform horizon for static damage of solids considering different nonlocal enhancements. Theor. Appl. Fract. Mech. 113, 102930 (2021). https://doi.org/10.1016/j.tafmec.2021.102930

    Article  Google Scholar 

  26. T. Rabczuk, T. Belytschko, Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int. J. Numer Methods Eng. 61, 2316–2343 (2004). https://doi.org/10.1002/nme.1151

    Article  MATH  Google Scholar 

  27. T. Rabczuk, G. Zi, S. Bordas et al., A simple and robust three-dimensional cracking-particle method without enrichment. Comput. Method Appl. Mech. 199, 2437–2455 (2010). https://doi.org/10.1016/j.cma.2010.03.031

    Article  MATH  Google Scholar 

  28. Y.M. Zhang, X.Y. Zhuang, Cracking elements: a self-propagating strong discontinuity embedded approach for quasi-brittle fracture. Finite Elem. Anal. Des. 144, 84–100 (2018). https://doi.org/10.1016/j.finel.2017.10.007

    Article  MathSciNet  Google Scholar 

  29. Y.M. Zhang, X.Y. Zhuang, Cracking elements method for dynamic brittle fracture. Theor. Appl. Fract. Mech. 102, 1–9 (2019). https://doi.org/10.1016/j.tafmec.2018.09.015

    Article  Google Scholar 

  30. Y.M. Zhang, R. Lackner, M. Zeiml et al., Strong discontinuity embedded approach with standard SOS formulation: element formulation, energy-based crack-tracking strategy, and validations. Comput. Method Appl. Mech. 287, 335–366 (2015). https://doi.org/10.1016/j.cma.2015.02.001

    Article  MathSciNet  MATH  Google Scholar 

  31. Y.M. Zhang, H.A. Mang, Global cracking elements: a novel tool for Galerkin-based approaches simulating quasi-brittle fracture. Int J Numer Meth Eng.121 2462–2480 (2019). arxiv-1908.06268

  32. Y.M. Zhang, J.G. Huang, Y. Yuan et al., Cracking elements method with a dissipation-based arc-length approach. Finite Finite Elem, Anal, Des. 195, 103573 (2021). https://doi.org/10.1016/j.finel.2021.103573

    Article  MathSciNet  Google Scholar 

  33. Y.M. Zhang, Z.R. Gao, Y.Y. Li et al., On the crack opening and energy dissipation in a continuum based disconnected crack model. Finite Elem, Anal, Des. 170, 103333 (2020). https://doi.org/10.1016/j.finel.2019.103333

    Article  MathSciNet  Google Scholar 

  34. Y.M. Zhang, X.Y. Wang, X.Q. Wang et al., Virtual displacement based discontinuity layout optimization. Int. J. Numer. Methods Eng. 123, 5682–5694 (2022). https://doi.org/10.1002/nme.7084

    Article  MathSciNet  Google Scholar 

  35. Y.M. Zhang, Z. Gao, X. Wang et al., Image representations of numerical simulations for training neural networks. Cmes-Comp. Model. Eng. 2, 821–833 (2013). https://doi.org/10.32604/cmes.2022.022088

    Article  Google Scholar 

  36. Y.M. Zhang, Z.R. Gao, X.Y. Wang et al., Predicting the pore-pressure and temperature of fire-loaded concrete by a hybrid neural network. Int. J. Comput. Methods 19, 2142011 (2022). https://doi.org/10.1142/s0219876221420111

    Article  MathSciNet  Google Scholar 

  37. Y.X. Xu, M.C. Wang, F.L. Zhu et al., A molecular dynamic study of nano-grinding of a monocrystalline copper-silicon substrate. Appl. Surf. Sci. 493, 933–947 (2019). https://doi.org/10.1016/j.apsusc.2019.07.076

    Article  ADS  Google Scholar 

  38. F.F. Xu, F.Z. Fang, X.D. Zhang, Effects of recovery and side flow on surface generation in nano-cutting of single crystal silicon. Comput. Mater. Sci. 143, 133–142 (2018). https://doi.org/10.1016/j.commatsci.2017.11.002

    Article  Google Scholar 

  39. Z.P. Hao, Z.Z. Lou, Y.H. Fan, Study on the evolution mechanism of subsurface defects in nickel-based single crystal alloy during atomic and close-to-atomic scale cutting. J. Manuf. Process. 68, 14–33 (2021). https://doi.org/10.1016/j.jmapro.2021.07.013

    Article  Google Scholar 

  40. Y.H. Fan, W.Y. Wang, Z.P. Hao et al., Work hardening mechanism based on molecular dynamics simulation in cutting ni–fe–cr series of ni-based alloy. J Alloy Compd. 819, 153331 (2020). https://doi.org/10.1016/j.jallcom.2019.153331

    Article  Google Scholar 

  41. Z.P. Hao, Z.Z. Lou, Y.H. Fan, Influence of anisotropy of nickel-based single crystal superalloy in atomic and close-to-atomic scale cutting. Precis. Eng. 66, 347–362 (2020). https://doi.org/10.1016/j.precisioneng.2020.07.005

    Article  Google Scholar 

  42. Z.Z. Lou, Y.D. Yan, Y.Q. Geng et al., The effect of anisotropy of nickel-based single crystal alloys on the surface quality of sub-nanometer and near atomic scale cutting. Intermetallics 145, 107536 (2022). https://doi.org/10.1016/j.intermet.2022.107536

    Article  Google Scholar 

  43. Z.H. Xia, B.C. Gao, J.G. Yu et al., Molecular dynamics study of nano-cutting mechanical properties and microstructural evolution behavior of Ni/Ni3Al phase structure. J. Mater. Res. Technol. 19, 2447–2457 (2022). https://doi.org/10.1016/j.jmrt.2022.06.021

    Article  Google Scholar 

  44. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  MATH  ADS  Google Scholar 

  45. A. Stukowski, Visualization and analysis of atomistic simulation data with Ovito–the open visualization tool. Model. Simul. Mater. Sci Eng. 18, 015012 (2010). https://doi.org/10.1088/0965-0393/18/1/015012

    Article  ADS  Google Scholar 

  46. S.V. Hosseini, M. Vahdati, Modeling the effect of tool edge radius on contact zone in nanomachining. Comput. Mater. Sci. 65, 29–36 (2012). https://doi.org/10.1016/j.commatsci.2012.06.037

    Article  Google Scholar 

  47. Z.X. Zhu, B. Peng, R.C. Feng et al., Molecular dynamics simulation of chip formation mechanism in single-crystal nickel nanomachining. Sci. China Technol. Sci. 62, 1916–1929 (2019). https://doi.org/10.1007/s11431-019-9520-8

    Article  ADS  Google Scholar 

  48. S. Nosé, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984). https://doi.org/10.1063/1.447334

    Article  ADS  Google Scholar 

  49. Y.Q. Wang, S. Tang, J. Guo, Molecular dynamics study on deformation behaviour of monocrystalline GaN during nano abrasive machining - sciencedirect. Appl. Surf. Sci. 510, 145492 (2020). https://doi.org/10.1016/j.apsusc.2020.145492

    Article  Google Scholar 

  50. P.Z. Zhu, C. Qiu, F.Z. Fang et al., Molecular dynamics simulations of nanometric cutting mechanisms of amorphous alloy. Appl Surf Sci. 317, 432–442 (2014). https://doi.org/10.1016/j.apsusc.2014.08.031

    Article  ADS  Google Scholar 

  51. J. Tersoff, Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B. 39, 5566 (1989). https://doi.org/10.1103/physrevb.39.5566

    Article  ADS  Google Scholar 

  52. O. Deluigi, R. Pasianot, F. Valencia et al., Simulations of primary damage in a high entropy alloy: probing enhanced radiation resistance. Acta Mater. 213, 116951 (2021). https://doi.org/10.1016/j.actamat.2021.116951

    Article  Google Scholar 

  53. M. Baskes, X. Sha, J. Angelo et al., Trapping of hydrogen to lattice defects in nickel. Modell. Simul. Mater. Sci. Eng. 5, 651 (1997). https://doi.org/10.1088/0965-0393/5/6/007

    Article  ADS  Google Scholar 

  54. S. Foiles, M. Baskes, M. Daw, Embedded-atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B. 33, 7983 (1986). https://doi.org/10.1103/physrevb.33.7983

    Article  ADS  Google Scholar 

  55. Z.P. Hao, R.R. Cui, Y.H. Fan et al., Diffusion mechanism of tools and simulation in nanoscale cutting the Ni–Fe–Cr series of nickel-based superalloy. Int J Mech Sci. 150, 625–636 (2019). https://doi.org/10.1016/j.ijmecsci.2018.10.058

    Article  Google Scholar 

  56. Z.X. Zhu, S. Jiao, H. Wang et al., Study on nanoscale friction and wear mechanism of nickel-based single crystal superalloy by molecular dynamics simulations. Tribol Int. 165, 107322 (2022). https://doi.org/10.1016/j.triboint.2021.107322

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No. 52265025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongxiao Zhu.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled, “Atomic-scale study of the nano-cutting deformation mechanism of nickel-based single crystal superalloy containing Cr, Co and γ/γ'”.

Ethical statement

We declare that our paper has not been submitted or published elsewhere; All data in this paper are true and reliable, and the main data and charts have not been published; This article does not contain plagiarism or infringement of others' intellectual property rights; This study does not involve human or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Luo, D., Zheng, M. et al. Atomic-scale study of the nano-cutting deformation mechanism of nickel-based single crystal superalloy containing Cr, Co, and γ/γ´. Appl. Phys. A 129, 300 (2023). https://doi.org/10.1007/s00339-023-06582-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06582-5

Keywords

Navigation